Particle dynamics simulations of a piston-based particle damper

A piston-based particle damper geometry is proposed and investigated using experiments and particle dynamics simulations. In particle damping, energy is dissipated through the inelastic collisions and friction between granular particles. Due to their temperature-independent performance, particle dampers are promising alternatives for use in extreme temperature conditions. Using the appropriate inter-particle force models, the simulations agree well with the experimental results. Using simulations, many parameters are investigated in this work for their effects on the damping performance, including material properties, particle size, device geometry, and excitation level. These results provide new understanding of particle damping and may help in the design of next generation particle dampers.

[1]  Ajit D. Kelkar,et al.  [american institute of aeronautics and astronautics 45th aiaa/asme/asce/ahs/asc structures, structural dynamics & materials conference - palm springs, california ()] 45th aiaa/asme/asce/ahs/asc structures, structural dynamics materials conference - comparative study of woven-roving and stitch-bonded , 2004 .

[2]  Tianning Chen,et al.  Particle damping for passive vibration suppression: numerical modelling and experimental investigation , 2005 .

[3]  G. Kuwabara,et al.  Restitution Coefficient in a Collision between Two Spheres , 1987 .

[4]  Masato Saeki,et al.  Analytical study of multi-particle damping , 2005 .

[5]  David I. G. Jones Handbook of Viscoelastic Vibration Damping , 2001 .

[6]  Stepan S. Simonian Particle Damping Applications , 2004 .

[7]  O. Walton,et al.  Effects of gravity on cohesive behavior of fine powders: implications for processing Lunar regolith , 2007 .

[8]  B. L. Severson,et al.  Granular mixtures: analogy with chemical solution thermodynamics. , 2007, The Journal of chemical physics.

[9]  R. L. Braun,et al.  Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks , 1986 .

[10]  Stepan Simonian,et al.  Parametric Test Results on Particle Dampers , 2007 .

[11]  Jiong Tang,et al.  Granular Damping in Forced Vibration: Qualitative and Quantitative Analyses , 2006 .

[12]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[13]  Joseph J. Hollkamp,et al.  Experiments with particle damping , 1998, Smart Structures.

[14]  Steven E. Olson,et al.  Effectiveness and predictability of particle damping , 2000, Smart Structures.

[15]  Ian P Bond,et al.  48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, USA , 2007 .

[16]  Kuanmin Mao,et al.  Simulation and Characterization of Particle Damping in Transient Vibrations , 2004 .

[17]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[18]  Vikram K. Kinra,et al.  PARTICLE IMPACT DAMPING , 1999 .

[19]  Whitney Rocketdyne,et al.  Non-Obstructive Particle Damping: New Experiences and Capabilities , 2008 .

[20]  C. N. Bapat,et al.  Single unit impact damper in free and forced vibration , 1985 .

[21]  G R Tomlinson,et al.  Damping characteristics of particle dampers—some preliminary results , 2001 .

[22]  G. Grest,et al.  Granular flow down an inclined plane: Bagnold scaling and rheology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Mihail C. Roco,et al.  Particulate two-phase flow , 1993 .

[24]  M. Adams,et al.  Discrete particle-continuum fluid modelling of gas–solid fluidised beds , 2002 .

[25]  Zhanxin Liu,et al.  A non-obstructive particle damping model of DEM , 2008 .

[26]  N. Popplewell,et al.  Performance of the bean bag impact damper for a sinusoidal external force , 1989 .

[27]  D. Wolf,et al.  Force Schemes in Simulations of Granular Materials , 1996 .

[28]  Hans J. Herrmann,et al.  Modeling granular media on the computer , 1998 .

[29]  Michael R Wisnom,et al.  48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference , 2007 .

[30]  Sami F. Masri,et al.  An Experimental Investigation of Particle Dampers Under Harmonic Excitation , 1998 .

[31]  R. D. Mindlin Elastic Spheres in Contact Under Varying Oblique Forces , 1953 .

[32]  Kuanmin Mao,et al.  DEM simulation of particle damping , 2004 .

[33]  Hagop V. Panossian,et al.  Structural Damping Enhancement Via Non-Obstructive Particle Damping Technique , 1992 .

[34]  Stephan S. Simonian,et al.  Particle beam damper , 1995, Smart Structures.

[35]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[36]  L. Vu-Quoc,et al.  Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions , 2002 .

[37]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[38]  Joseph J. McCarthy,et al.  Discrete characterization tools for cohesive granular material , 2001 .

[39]  Julio M. Ottino,et al.  Computational studies of granular mixing , 2000 .