Earth rotation based on the celestial coordinates of the celestial intermediate pole - I. The dynamical equations

We present a study of the Earth's rotational motion in terms of the Earth Orientation Parameters (EOP) of the new paradigm that is recommended by the IAU 2000 resolutions to transform between the celestial and terrestrial reference systems. This paper presents the first part of the study whose purpose is to establish the dynamical equations of the rotation of a rigid Earth as a function of these new parameters. Starting from Euler dynamical equations for a rigid Earth, and using expressions for the components of the instantaneous rotation vector as functions of the celestial coordinates X, Y of the Celestial intermediate pole (CIP) and of the Earth rotation angle (ERA), the equations of Earth rotation were obtained explicitly in terms of those parameters. Taking into account the order of magnitude of the terms of these equations, we obtain the most appropriate form of the equations for a practical integration. We then investigated the possible methods of integration for providing semi-analytical solutions for the X and Y variables in the axially symmetric case. We also perform a number of tests regarding the efficiency of these methods, based on the IAU 2000 precession-nutation. We extended this approach to a deformable Earth, based on integration constants compliant with the new P03 precession model.

[1]  P. Seidelmann,et al.  Division I Working Group on “Nomenclature for Fundamental Astronomy” (NFA) , 2005, Proceedings of the International Astronomical Union.

[2]  Jean Souchay,et al.  Free polar motion of a triaxial and elastic body in Hamiltonian formalism: Application to the Earth and Mars , 2005 .

[3]  Nicole Capitaine,et al.  Improvement of the IAU 2000 precession model , 2005 .

[4]  N. Capitaine,et al.  Precession, nutation, and space geodetic determination of the Earth's variable gravity field , 2004, 0711.4575.

[5]  Nicole Capitaine,et al.  Expressions for IAU 2000 precession quantities , 2003 .

[6]  Nicole Capitaine,et al.  Expressions for the Celestial Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A precession-nutation model , 2003 .

[7]  Thomas A. Herring,et al.  Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Ea , 2002 .

[8]  J. Souchay,et al.  Corrections and new developments in rigid earth nutation theory. III. Final tables ``REN-2000 , 1999 .

[9]  V. Dehant,et al.  RDAN97: An Analytical Development of Rigid Earth Nutation Series Using the Torque Approach , 1998 .

[10]  P. Bretagnon,et al.  Theory of the rotation of the rigid Earth , 1997 .

[11]  James G. Williams,et al.  Contributions to the Earth's Obliquity Rate, Precession, and Nutation , 1994 .

[12]  Nicole Capitaine,et al.  The use of the precise observations of the celestial ephemeris pole in the analysis of geophysical excitation of Earth rotation , 1993 .

[13]  N. Capitaine,et al.  The celestial pole coordinates , 1990, Celestial Mechanics and Dynamical Astronomy.

[14]  P. Bretagnon,et al.  Planetary Theories in rectangular and spherical variables: VSOP87 solution. , 1988 .

[15]  N. Capitaine,et al.  A non-rotating origin on the instantaneous equator: Definition, properties and use , 1986 .

[16]  J. Chapront,et al.  The lunar ephemeris ELP 2000. , 1983 .

[17]  K. Lambeck On the Rotation of the Earth , 1983, Nature.

[18]  H. Kinoshita Theory of the rotation of the rigid earth , 1977 .

[19]  W. Munk,et al.  Astronomy-Geophysics. (Book Reviews: The Rotation of the Earth. A geophysical discussion) , 1975 .

[20]  Sophie Millet Sophie Millet SERAC : un système d'évaluation et de révision des connaissances en EIAO Thèse de l'Université Paul Sabatier-Toulouse III, Toulouse, 21 novembre 1997 , 1997 .

[21]  Helmut Moritz,et al.  Earth Rotation: Theory and Observation , 1987 .