On incomplete and synchronizing finite sets

This paper situates itself in the theory of variable length codes and of finite automata where the concepts of completeness and synchronization play a central role. In this theoretical setting, we investigate the problem of finding upper bounds to the minimal length of synchronizing words and incompletable words of a finite language X in terms of the length of the words of X. This problem is related to two well-known conjectures formulated by ern and Restivo, respectively. In particular, if Restivo's conjecture is true, our main result provides a quadratic bound for the minimal length of a synchronizing pair of any finite synchronizing complete code with respect to the maximal length of its words.

[1]  Dominique Perrin,et al.  A Quadratic Upper Bound on the Size of a Synchronizing Word in One-Cluster Automata , 2009, Developments in Language Theory.

[2]  Dominique Perrin,et al.  Codes and Automata (Encyclopedia of Mathematics and its Applications) , 2009 .

[3]  Antonio Restivo,et al.  Minimal Complete Sets of Words , 1980, Theor. Comput. Sci..

[4]  Flavio D'Alessandro,et al.  On the Hybrid Cerný-Road Coloring Problem and Hamiltonian Paths , 2010, Developments in Language Theory.

[5]  Mikhail V. Volkov,et al.  Synchronizing Automata and the Cerny Conjecture , 2008, LATA.

[6]  A. N. Trahtman,et al.  The road coloring problem , 2007, 0709.0099.

[7]  Flavio D'Alessandro,et al.  Independent sets of words and the synchronization problem , 2013, Adv. Appl. Math..

[8]  Dominique Perrin,et al.  Codes and Automata , 2009, Encyclopedia of mathematics and its applications.

[9]  Arturo Carpi,et al.  On Synchronizing Unambiguous Automata , 1988, Theor. Comput. Sci..

[10]  Arturo Carpi,et al.  Completeness and synchronization for finite sets of words , 2014 .

[11]  Vladimir V. Gusev,et al.  Slowly Synchronizing Automata and Digraphs , 2010, MFCS.

[12]  Jean-Éric Pin,et al.  Sur un Cas Particulier de la Conjecture de Cerny , 1978, ICALP.

[13]  Vladimir V. Gusev,et al.  On Non-complete Sets and Restivo's Conjecture , 2011, Developments in Language Theory.

[14]  Jean-Eric Pin,et al.  Le problème de la synchronisation et la conjecture de Cerný , 1981 .

[15]  Jacques Sakarovitch,et al.  On the Minimal Uncompletable Word Problem , 2010, ArXiv.

[16]  Flavio D'Alessandro,et al.  Cerny-like problems for finite sets of words , 2014, ICTCS.

[17]  Flavio D'Alessandro,et al.  Strongly transitive automata and the Černý conjecture , 2009, Acta Informatica.

[18]  Flavio D'Alessandro,et al.  The Synchronization Problem for Locally Strongly Transitive Automata , 2009, MFCS.

[19]  Benjamin Weiss,et al.  Equivalence of topological Markov shifts , 1977 .

[20]  Flavio D'Alessandro,et al.  The Synchronization Problem for Strongly Transitive Automata , 2008, Developments in Language Theory.