Advancing epilepsy genetics in the genomic era

[1]  Michael R. Johnson,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[2]  H. Kitaura,et al.  Somatic Mutations in the MTOR gene cause focal cortical dysplasia type IIb , 2015, Annals of neurology.

[3]  M. Tarnopolsky,et al.  Whole‐exome sequencing broadens the phenotypic spectrum of rare pediatric epilepsy: a retrospective study , 2015, Clinical genetics.

[4]  Michael R. Johnson,et al.  Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy , 2015, Annals of neurology.

[5]  G. Carvill,et al.  Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures. , 2015, American journal of human genetics.

[6]  Christian Gieger,et al.  Burden Analysis of Rare Microdeletions Suggests a Strong Impact of Neurodevelopmental Genes in Genetic Generalised Epilepsies , 2015, PLoS genetics.

[7]  Amit Kumar,et al.  The eEF1A Proteins: At the Crossroads of Oncogenesis, Apoptosis, and Viral Infections , 2015, Front. Oncol..

[8]  H. Arai,et al.  De novo EEF1A2 mutations in patients with characteristic facial features, intellectual disability, autistic behaviors and epilepsy , 2015, Clinical genetics.

[9]  P. Crino mTOR signaling in epilepsy: insights from malformations of cortical development. , 2015, Cold Spring Harbor perspectives in medicine.

[10]  A. Biraben,et al.  Familial focal epilepsy with focal cortical dysplasia due to DEPDC5 mutations , 2015, Annals of neurology.

[11]  J. Shendure,et al.  Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia , 2015, Annals of neurology.

[12]  Seok-Gu Kang,et al.  Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy , 2015, Nature Medicine.

[13]  I. Scheffer,et al.  CHD2 variants are a risk factor for photosensitivity in epilepsy , 2015, Brain : a journal of neurology.

[14]  M. Migliore,et al.  Early-Onset Epileptic Encephalopathy Caused by Gain-of-Function Mutations in the Voltage Sensor of Kv7.2 and Kv7.3 Potassium Channel Subunits , 2015, The Journal of Neuroscience.

[15]  G. Carvill,et al.  CHD2 myoclonic encephalopathy is frequently associated with self-induced seizures , 2015, Neurology.

[16]  D. Ville,et al.  Homozygous TBC1D24 mutation in two siblings with familial infantile myoclonic epilepsy (FIME) and moderate intellectual disability , 2015, Epilepsy Research.

[17]  D. Neubauer,et al.  Early-onset epileptic encephalopathy with hearing loss in two siblings with TBC1D24 recessive mutations. , 2015, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[18]  Maja Steinlin,et al.  De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy , 2015, Nature Genetics.

[19]  G. Carvill,et al.  The phenotypic spectrum of SCN8A encephalopathy , 2015, Neurology.

[20]  M. Daly,et al.  A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy , 2014, Nature Genetics.

[21]  L. Al-Gazali,et al.  A Novel Whole Exon Deletion in WWOX Gene Causes Early Epilepsy, Intellectual Disability and Optic Atrophy , 2015, Journal of Molecular Neuroscience.

[22]  M. Kals,et al.  De Novo SCN8A Mutation Identified by Whole-Exome Sequencing in a Boy With Neonatal Epileptic Encephalopathy, Multiple Congenital Anomalies, and Movement Disorders , 2014, Journal of child neurology.

[23]  S. Auvin,et al.  WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation , 2014, Journal of Medical Genetics.

[24]  Mahshid S. Azamian,et al.  Mutations in PURA cause profound neonatal hypotonia, seizures, and encephalopathy in 5q31.3 microdeletion syndrome. , 2014, American journal of human genetics.

[25]  J. Roach,et al.  Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes , 2014, Nature Genetics.

[26]  D. Behar,et al.  Two siblings with early infantile myoclonic encephalopathy due to mutation in the gene encoding mitochondrial glutamate/H+ symporter SLC25A22. , 2014, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[27]  Stef van Lieshout,et al.  Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy , 2014, Epilepsy Research.

[28]  L. Jan,et al.  Common variants associated with general and MMR vaccine-related febrile seizures , 2014, Nature Genetics.

[29]  Diana Baralle,et al.  Whole exome sequencing in family trios reveals de novo mutations in PURA as a cause of severe neurodevelopmental delay and learning disability , 2014, Journal of Medical Genetics.

[30]  Kali T. Witherspoon,et al.  Recurrent de novo mutations implicate novel genes underlying simplex autism risk , 2014, Nature Communications.

[31]  Epilepsy Phenome,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[32]  Edouard Henrion,et al.  De Novo Mutations in Moderate or Severe Intellectual Disability , 2014, PLoS genetics.

[33]  R. L. Bjork,et al.  De novo KCNB1 mutations in epileptic encephalopathy , 2014, Annals of neurology.

[34]  H. Mefford,et al.  The genetic landscape of infantile spasms. , 2014, Human molecular genetics.

[35]  Ethan M. Goldberg,et al.  Targeted treatment of migrating partial seizures of infancy with quinidine , 2014, Annals of neurology.

[36]  J. Conroy,et al.  The variable phenotypes of KCNQ‐related epilepsy , 2014, Epilepsia.

[37]  M. Hammer,et al.  A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy , 2014, Neurobiology of Disease.

[38]  P. Striano,et al.  Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy , 2014, Annals of neurology.

[39]  Michael R. Johnson,et al.  Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies , 2014, The Lancet Neurology.

[40]  A. Toutain,et al.  Mutations in SLC13A5 cause autosomal-recessive epileptic encephalopathy with seizure onset in the first days of life. , 2014, American journal of human genetics.

[41]  K. Boycott,et al.  Whole‐exome sequencing in an individual with severe global developmental delay and intractable epilepsy identifies a novel, de novo GRIN2A mutation , 2014, Epilepsia.

[42]  E. Leshinsky‐Silver,et al.  Early onset epileptic encephalopathy caused by de novo SCN8A mutations , 2014, Epilepsia.

[43]  H. Mefford CNVs in Epilepsy , 2014, Current Genetic Medicine Reports.

[44]  M. Baulac,et al.  DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy , 2014, Neurology.

[45]  J. Conroy,et al.  Towards the identification of a genetic basis for Landau‐Kleffner syndrome , 2014, Epilepsia.

[46]  F. Duffy,et al.  Copy number variation plays an important role in clinical epilepsy , 2014, Annals of neurology.

[47]  I. Scheffer,et al.  Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations , 2014, Annals of neurology.

[48]  Holger Lerche,et al.  DEPDC5 mutations in genetic focal epilepsies of childhood , 2014, Annals of neurology.

[49]  R. Ottman,et al.  Genetic testing in the epilepsies—developments and dilemmas , 2014, Nature Reviews Neurology.

[50]  Oriane Trouillard,et al.  De novo mutations in HCN1 cause early infantile epileptic encephalopathy , 2014, Nature Genetics.

[51]  J. Shendure,et al.  GABRA1 and STXBP1: Novel genetic causes of Dravet syndrome , 2014, Neurology.

[52]  I. Scheffer,et al.  KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine , 2014, Annals of neurology.

[53]  E. Brodtkorb,et al.  CHD2 mutations in Lennox–Gastaut syndrome , 2014, Epilepsy & Behavior.

[54]  I. Scheffer,et al.  Dominant‐negative effects of KCNQ2 mutations are associated with epileptic encephalopathy , 2014, Annals of neurology.

[55]  Stephen F Traynelis,et al.  GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine , 2014, Annals of clinical and translational neurology.

[56]  J. Shendure,et al.  A de novo convergence of autism genetics and molecular neuroscience , 2014, Trends in Neurosciences.

[57]  N. Drouot,et al.  The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. , 2014, Brain : a journal of neurology.

[58]  H. Bolz,et al.  The supposed tumor suppressor gene WWOX is mutated in an early lethal microcephaly syndrome with epilepsy, growth retardation and retinal degeneration , 2014, Orphanet Journal of Rare Diseases.

[59]  F. Alkuraya,et al.  NECAP1 loss of function leads to a severe infantile epileptic encephalopathy , 2014, Journal of Medical Genetics.

[60]  Markus Wolff,et al.  GRIN2B Mutations in West Syndrome and Intellectual Disability with Focal Epilepsy , 2014, Annals of neurology.

[61]  C. Walsh,et al.  Somatic mutations in cerebral cortical malformations. , 2014, The New England journal of medicine.

[62]  S. Scherer,et al.  CHD2 haploinsufficiency is associated with developmental delay, intellectual disability, epilepsy and neurobehavioural problems , 2014, Journal of Neurodevelopmental Disorders.

[63]  L. Wilkins Copy number variants are frequent in genetic generalized epilepsy with intellectual disability , 2013, Neurology.

[64]  Anup D. Patel,et al.  Two patients with a GRIN2A mutation and childhood-onset epilepsy. , 2013, Pediatric neurology.

[65]  Y. Wada,et al.  De Novo Mutations in SLC35A2 Encoding a UDP‐Galactose Transporter Cause Early‐Onset Epileptic Encephalopathy , 2013, Human mutation.

[66]  M. Ōsawa,et al.  A recurrent KCNT1 mutation in two sporadic cases with malignant migrating partial seizures in infancy. , 2013, Gene.

[67]  I. Scheffer,et al.  SLC25A22 is a novel gene for migrating partial seizures in infancy , 2013, Annals of neurology.

[68]  Holger Lerche,et al.  De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. , 2013, American journal of human genetics.

[69]  A. Wilfong,et al.  Treating Epilepsy in Tuberous Sclerosis with Everolimus: Getting Closer , 2014, Epilepsy currents.

[70]  Naomichi Matsumoto,et al.  De Novo mutations in GNAO1, encoding a Gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. , 2013, American journal of human genetics.

[71]  Scott C. Baraban,et al.  Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet Syndrome treatment , 2013, Nature Communications.

[72]  F. Nan,et al.  Discovery of a retigabine derivative that inhibits KCNQ2 potassium channels , 2013, Acta Pharmacologica Sinica.

[73]  U. Stephani,et al.  Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes , 2013, Nature Genetics.

[74]  Anne de Saint Martin,et al.  GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction , 2013, Nature Genetics.

[75]  J. Shendure,et al.  GRIN2A mutations cause epilepsy-aphasia spectrum disorders , 2013, Nature Genetics.

[76]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[77]  J. Gécz,et al.  TBC1D24 mutation associated with focal epilepsy, cognitive impairment and a distinctive cerebro-cerebellar malformation , 2013, Epilepsy Research.

[78]  K. Veeramah,et al.  Exome sequencing reveals new causal mutations in children with epileptic encephalopathies , 2013, Epilepsia.

[79]  F. Benfenati,et al.  Novel Compound Heterozygous Mutations in TBC1D24 Cause Familial Malignant Migrating Partial Seizures of Infancy , 2013, Human mutation.

[80]  J. Shendure,et al.  Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1 , 2013, Nature Genetics.

[81]  S. Scherer,et al.  Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. , 2013, Human molecular genetics.

[82]  I. Scheffer,et al.  Migrating partial seizures of infancy: expansion of the electroclinical, radiological and pathological disease spectrum. , 2013, Brain : a journal of neurology.

[83]  Emily H Turner,et al.  Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. , 2013, American journal of human genetics.

[84]  R. Miles,et al.  Mutations of DEPDC5 cause autosomal dominant focal epilepsies , 2013, Nature Genetics.

[85]  François Dubeau,et al.  Mutations in DEPDC5 cause familial focal epilepsy with variable foci , 2013, Nature Genetics.

[86]  I. Scheffer,et al.  Recent advances in the molecular genetics of epilepsy , 2013, Journal of Medical Genetics.

[87]  O. Zuffardi,et al.  Neonatal suppression-burst without epileptic seizures: expanding the electroclinical phenotype of STXBP1-related, early-onset encephalopathy , 2013, Epileptic disorders : international epilepsy journal with videotape.

[88]  M. Migliore,et al.  Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits , 2013, Proceedings of the National Academy of Sciences.

[89]  Marni J. Falk,et al.  MEF2C Haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways , 2013, neurogenetics.

[90]  H. Mefford,et al.  Exon‐disrupting deletions of NRXN1 in idiopathic generalized epilepsy , 2013, Epilepsia.

[91]  Holger Lerche,et al.  Rare exonic deletions of the RBFOX1 gene increase risk of idiopathic generalized epilepsy , 2013, Epilepsia.

[92]  J. Lacaille,et al.  Mutations in SYNGAP1 Cause Intellectual Disability, Autism, and a Specific Form of Epilepsy by Inducing Haploinsufficiency , 2013, Human mutation.

[93]  A. Tolun,et al.  TBC1D24 truncating mutation resulting in severe neurodegeneration , 2013, Journal of Medical Genetics.

[94]  W. Chung,et al.  Mutation in SNAP25 as a novel genetic cause of epilepsy and intellectual disability , 2013, Rare diseases.

[95]  S. Hodge,et al.  Familial cosegregation of rare genetic variants with disease in complex disorders , 2012, European Journal of Human Genetics.

[96]  De novo mutations in epileptic encephalopathies , 2013 .

[97]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[98]  B. Echenne,et al.  MEF2C mutations are a rare cause of Rett or severe Rett‐like encephalopathies , 2012, Clinical Genetics.

[99]  Katherine R. Smith,et al.  Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy , 2012, Nature Genetics.

[100]  L. Kaczmarek,et al.  De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy , 2012, Nature Genetics.

[101]  Catharyn T. Liverman,et al.  Epilepsy across the spectrum: Promoting health and understanding. A summary of the Institute of Medicine report , 2012, Epilepsy & Behavior.

[102]  E. Eichler,et al.  Epi4K: Gene discovery in 4,000 genomes , 2012 .

[103]  S. Gabriel,et al.  De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly , 2012, Nature Genetics.

[104]  J. Shendure,et al.  De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes , 2012, Nature Genetics.

[105]  Darcy Mcmullin Epi4K: Gene discovery in 4,000 genomes , 2012, Epilepsia.

[106]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[107]  K. Veeramah,et al.  De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. , 2012, American journal of human genetics.

[108]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[109]  Lieven Lagae,et al.  KCNQ2 encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy , 2012, Annals of neurology.

[110]  Andrea M. Schultz,et al.  Epilepsy Across the Spectrum , 2012 .

[111]  I. Scheffer,et al.  Rare copy number variants are an important cause of epileptic encephalopathies , 2011, Annals of neurology.

[112]  L. Carmant,et al.  Novel α1 and γ2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy , 2011, The European journal of neuroscience.

[113]  J. Lacaille,et al.  De Novo SYNGAP1 Mutations in Nonsyndromic Intellectual Disability and Autism , 2011, Biological Psychiatry.

[114]  J. Lacaille,et al.  Intellectual disability without epilepsy associated with STXBP1 disruption , 2011, European Journal of Human Genetics.

[115]  H. Arai,et al.  STXBP1 mutations in early infantile epileptic encephalopathy with suppression‐burst pattern , 2010, Epilepsia.

[116]  H. Ikeda,et al.  STXBP1 mutations cause not only Ohtahara syndrome but also West syndrome—Result of Japanese cohort study , 2010, Epilepsia.

[117]  I. Scheffer,et al.  Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations , 2010, Neurology.

[118]  J. Gécz,et al.  A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24. , 2010, American journal of human genetics.

[119]  F. Benfenati,et al.  TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. , 2010, American journal of human genetics.

[120]  H. Firth,et al.  Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression , 2010, Human mutation.

[121]  Michael R. Johnson,et al.  Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. , 2010, American journal of human genetics.

[122]  Ulrich Stephani,et al.  Genome-Wide Copy Number Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal Epilepsies , 2010, PLoS genetics.

[123]  J. H. Cross,et al.  Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009 , 2010, Epilepsia.

[124]  C. Baker,et al.  Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. , 2010, Brain : a journal of neurology.

[125]  I. Scheffer,et al.  Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. , 2009, Human molecular genetics.

[126]  A. Munnich,et al.  Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts , 2009, Clinical genetics.

[127]  E. Fombonne,et al.  De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy , 2009, Annals of neurology.

[128]  Christian E Elger,et al.  15q13.3 microdeletions increase risk of idiopathic generalized epilepsy , 2009, Nature Genetics.

[129]  Naomichi Matsumoto,et al.  De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy , 2008, Nature Genetics.

[130]  T. Sander,et al.  Mutation analysis of the hyperpolarization-activated cyclic nucleotide-gated channels HCN1 and HCN2 in idiopathic generalized epilepsy , 2008, Neurobiology of Disease.

[131]  I. Scheffer,et al.  Exploration of the Genetic Architecture of Idiopathic Generalized Epilepsies , 2006, Epilepsia.

[132]  L. Kaczmarek,et al.  Pharmacological activation and inhibition of Slack (Slo2.2) channels , 2006, Neuropharmacology.

[133]  Holger Lerche,et al.  A mutation in the GABAA receptor α1‐subunit is associated with absence epilepsy , 2006 .

[134]  A. Munnich,et al.  Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. , 2005, American journal of human genetics.

[135]  I. Scheffer,et al.  Genetic Architecture of Idiopathic Generalized Epilepsy: Clinical Genetic Analysis of 55 Multiplex Families , 2004, Epilepsia.

[136]  I. Scheffer,et al.  Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction , 2004, Journal of Medical Genetics.

[137]  M. Leppert,et al.  KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. , 2003, Brain : a journal of neurology.

[138]  Wei-Yang Lu,et al.  Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy , 2002, Nature Genetics.

[139]  L. Lagae,et al.  De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. , 2001, American journal of human genetics.

[140]  S. Berkovic,et al.  Epilepsies in twins: Genetics of the major epilepsy syndromes , 1998, Annals of neurology.

[141]  Mark Leppert,et al.  A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns , 1998, Nature Genetics.

[142]  I. Scheffer,et al.  A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy , 1995, Nature Genetics.

[143]  W. Hauser,et al.  Seizure Risk in Offspring of Parents with Generalized Versus Partial Epilepsy , 1989, Epilepsia.

[144]  W. Hauser,et al.  The risks of seizure disorders among relatives of patients with childhood onset epilepsy , 1982, Neurology.