Neuron Types in the Presumptive Primary Somatosensory Cortex of the Florida Manatee (Trichechus manatus latirostris)

Within afrotherians, sirenians are unusual due to their aquatic lifestyle, large body size and relatively large lissencephalic brain. However, little is known about the neuron type distributions of the cerebral cortex in sirenians within the context of other afrotherians and aquatic mammals. The present study investigated two cortical regions, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2), in the presumptive primary somatosensory cortex (S1) in Florida manatees (Trichechus manatus latirostris) to characterize cyto- and chemoarchitecture. The mean neuron density for both cortical regions was 35,617 neurons/mm3 and fell within the 95% prediction intervals relative to brain mass based on a reference group of afrotherians and xenarthrans. Densities of inhibitory interneuron subtypes labeled against calcium-binding proteins and neuropeptide Y were relatively low compared to afrotherians and xenarthrans and also formed a small percentage of the overall population of inhibitory interneurons as revealed by GAD67 immunoreactivity. Nonphosphorylated neurofilament protein-immunoreactive (NPNFP-ir) neurons comprised a mean of 60% of neurons in layer V across DL1 and CL2. DL1 contained a higher percentage of NPNFP-ir neurons than CL2, although CL2 had a higher variety of morphological types. The mean percentage of NPNFP-ir neurons in the two regions of the presumptive S1 were low compared to other afrotherians and xenarthrans but were within the 95% prediction intervals relative to brain mass, and their morphologies were comparable to those found in other afrotherians and xenarthrans. Although this specific pattern of neuron types and densities sets the manatee apart from other afrotherians and xenarthrans, the manatee isocortex does not appear to be explicitly adapted for an aquatic habitat. Many of the features that are shared between manatees and cetaceans are also shared with a diverse array of terrestrial mammals and likely represent highly conserved neural features. A comparative study across manatees and dugongs is necessary to determine whether these traits are specific to one or more of the manatee species, or can be generalized to all sirenians.

[1]  Barbara L Finlay,et al.  Evolution of cytoarchitectural landscapes in the mammalian isocortex: Sirenians (Trichechus manatus) in comparison with other mammals , 2016, The Journal of comparative neurology.

[2]  G. Striedter,et al.  Cortical folding: when, where, how, and why? , 2015, Annual review of neuroscience.

[3]  Bruno Mota,et al.  Cortical folding scales universally with surface area and thickness, not number of neurons , 2015, Science.

[4]  P. Hof,et al.  The neocortex of cetartiodactyls: I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae) , 2015, Brain Structure and Function.

[5]  Peter Jonas,et al.  Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function , 2014, Science.

[6]  Chet C. Sherwood,et al.  The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis) , 2014, Brain Structure and Function.

[7]  Andreas Draguhn,et al.  Highly Energized Inhibitory Interneurons are a Central Element for Information Processing in Cortical Networks , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  Cheuk Y. Tang,et al.  The Cerebral Cortex of the Pygmy Hippopotamus, Hexaprotodon liberiensis (Cetartiodactyla, Hippopotamidae): MRI, Cytoarchitecture, and Neuronal Morphology , 2014, Anatomical record.

[9]  S. Herculano‐Houzel,et al.  Cellular scaling rules for the brain of afrotherians , 2014, Front. Neuroanat..

[10]  Detection of hydrodynamic stimuli by the Florida manatee (Trichechus manatus latirostris) , 2013, Journal of Comparative Physiology A.

[11]  Sarah A. Stamper,et al.  Tactile discrimination of textures by Florida manatees (Trichechus manatus latirostris) , 2012 .

[12]  Sen Song,et al.  Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model , 2012, Proceedings of the National Academy of Sciences.

[13]  D. Wildman,et al.  Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling , 2012, Journal of evolutionary biology.

[14]  Bruno Mota,et al.  How the Cortex Gets Its Folds: An Inside-Out, Connectivity-Driven Model for the Scaling of Mammalian Cortical Folding , 2012, Front. Neuroanat..

[15]  T. J. Robinson,et al.  Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification , 2011, Science.

[16]  M. Mattson,et al.  Neuronal calcium homeostasis and dysregulation. , 2011, Antioxidants & redox signaling.

[17]  F. Galis,et al.  Breaking evolutionary and pleiotropic constraints in mammals: On sloths, manatees and homeotic mutations , 2011, EvoDevo.

[18]  L. Hayek,et al.  Proximate Nutrient Analyses of Four Species of Submerged Aquatic Vegetation Consumed by Florida Manatee (Trichechus manatus latirostris) Compared to Romaine Lettuce (Lactuca sativa var. longifolia) , 2010, Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians.

[19]  R. A. Pyron,et al.  A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations. , 2010, Systematic biology.

[20]  Chet C. Sherwood,et al.  Neuronal morphology in the African elephant (Loxodonta africana) neocortex , 2010, Brain Structure and Function.

[21]  Tim M Blackburn,et al.  Phylogenetically Informed Analysis of the Allometry of Mammalian Basal Metabolic Rate Supports Neither Geometric Nor Quarter-Power Scaling , 2009, Evolution; international journal of organic evolution.

[22]  T. Lehmann,et al.  The new framework for understanding placental mammal evolution , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  Jan Karbowski,et al.  Thermodynamic constraints on neural dimensions, firing rates, brain temperature and size , 2009, Journal of Computational Neuroscience.

[24]  J. Allman,et al.  Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals , 2009, Brain Structure and Function.

[25]  S. Karita,et al.  Nutrient and energy consumption of captive mature dugong (Dugong dugon) consuming eelgrass at the Toba Aquarium , 2008 .

[26]  Eric D. Green,et al.  Confirming the Phylogeny of Mammals by Use of Large Comparative Sequence Data Sets , 2008, Molecular biology and evolution.

[27]  S. Schiffmann,et al.  ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice , 2002, The Cerebellum.

[28]  W. J. Loughry,et al.  The biology of the Xenarthra , 2008 .

[29]  Patrick R Hof,et al.  Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. , 2007, Cerebral cortex.

[30]  F. Rice,et al.  Adaptations in the structure and innervation of follicle‐sinus complexes to an aquatic environment as seen in the Florida manatee (Trichechus manatus latirostris) , 2007, The Journal of comparative neurology.

[31]  Olivier Gascuel,et al.  Genomics, biogeography, and the diversification of placental mammals , 2007, Proceedings of the National Academy of Sciences.

[32]  B. Hallström,et al.  Phylogenomic data analyses provide evidence that Xenarthra and Afrotheria are sister groups. , 2007, Molecular biology and evolution.

[33]  Frietson Galis,et al.  Novelties: The Making and Breaking of Pleiotropic , 2008 .

[34]  M. Novacek,et al.  Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary , 2007, Nature.

[35]  J. Reidenberg Anatomical adaptations of aquatic mammals , 2007, Anatomical record.

[36]  Lori Marino,et al.  Cetacean brains: How aquatic are they? , 2007, Anatomical record.

[37]  E. A. Buchholtz,et al.  Vertebral anatomy in the Florida manatee, Trichechus manatus latirostris: A developmental and evolutionary analysis , 2007, Anatomical record.

[38]  P. Manger,et al.  Order‐specific quantitative patterns of cortical gyrification , 2007, The European journal of neuroscience.

[39]  Webb Miller,et al.  Using genomic data to unravel the root of the placental mammal phylogeny. , 2007, Genome research.

[40]  M. Rosa,et al.  Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): Laminar distribution of calcium‐binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament , 2007, The Journal of comparative neurology.

[41]  Bruno Nyffeler,et al.  Early History of Mammals Is Elucidated with the ENCODE Multiple Species Sequencing Data , 2007, PLoS genetics.

[42]  P. Hof,et al.  Scaling of Inhibitory Interneurons in Areas V1 and V2 of Anthropoid Primates as Revealed by Calcium-Binding Protein Immunohistochemistry , 2006, Brain, Behavior and Evolution.

[43]  R. Reep,et al.  Somatosensory Areas of Manatee Cerebral Cortex: Histochemical Characterization and Functional Implications , 2006, Brain, Behavior and Evolution.

[44]  M. Kiefmann,et al.  Retroposed Elements as Archives for the Evolutionary History of Placental Mammals , 2006, PLoS biology.

[45]  Kate E. Jones,et al.  Mating system and brain size in bats , 2006, Proceedings of the Royal Society B: Biological Sciences.

[46]  Patrick R Hof,et al.  Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[47]  P. Hof,et al.  Animal Studies Repository Animal Studies Repository Cortical Complexity in Cetacean Brains , 2022 .

[48]  J. Kaas,et al.  The evolution of the neocortex in mammals: how is phenotypic diversity generated? , 2005, Current Opinion in Neurobiology.

[49]  Z. Baldauf,et al.  SMI-32 parcellates the visual cortical areas of the marmoset , 2005, Neuroscience Letters.

[50]  K. Ashwell,et al.  Cyto- and Chemoarchitecture of the Cortex of the Tammar Wallaby (Macropuseugenii): Areal Organization , 2005, Brain, Behavior and Evolution.

[51]  Claire E Warner,et al.  Topographic and laminar maturation of striate cortex in early postnatal marmoset monkeys, as revealed by neurofilament immunohistochemistry. , 2005, Cerebral cortex.

[52]  Denis Boire,et al.  Regional analysis of neurofilament protein immunoreactivity in the hamster's cortex , 2005, Journal of Chemical Neuroanatomy.

[53]  G. Paxinos,et al.  Cyto‐ and chemoarchitecture of the cerebral cortex of an echidna (Tachyglossus aculeatus). II. Laminar organization and synaptic density , 2005, The Journal of comparative neurology.

[54]  G. Paxinos,et al.  Cyto‐ and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). I. Areal organization , 2004, The Journal of comparative neurology.

[55]  M. Stanhope,et al.  Molecules consolidate the placental mammal tree. , 2004, Trends in ecology & evolution.

[56]  Karl Zilles,et al.  Cortical Orofacial Motor Representation in Old World Monkeys, Great Apes, and Humans , 2004, Brain, Behavior and Evolution.

[57]  E. G. Jones,et al.  Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities , 2004, Experimental Brain Research.

[58]  J. Archibald Timing and biogeography of the eutherian radiation: fossils and molecules compared. , 2003 .

[59]  J. Vickers,et al.  Neurofilament triplet proteins are restricted to a subset of neurons in the rat neocortex , 2002, Journal of Chemical Neuroanatomy.

[60]  R. Reep,et al.  Tactile Hairs on the Postcranial Body in Florida Manatees: A Mammalian Lateral Line? , 2002, Brain, Behavior and Evolution.

[61]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[62]  H. Vogel,et al.  Calcium-binding proteins. , 2002, Methods in molecular biology.

[63]  M. Fowler,et al.  Biology, medicine, and surgery of South American wild animals. , 2008 .

[64]  L. Arckens,et al.  Neurofilament protein: A selective marker for the architectonic parcellation of the visual cortex in adult cat brain , 2001, The Journal of comparative neurology.

[65]  D. Samuelson,et al.  Microanatomy of Facial Vibrissae in the Florida Manatee: The Basis for Specialized Sensory Function and Oripulation , 2001, Brain, Behavior and Evolution.

[66]  W. Murphy,et al.  Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics , 2001, Science.

[67]  S. O’Brien,et al.  Molecular phylogenetics and the origins of placental mammals , 2001, Nature.

[68]  H Scheich,et al.  Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections , 2000, The European journal of neuroscience.

[69]  P. Hof,et al.  Neurochemical and Cellular Specializations in the Mammalian Neocortex Reflect Phylogenetic Relationships: Evidence from Primates, Cetaceans, and Artiodactyls , 2000, Brain, Behavior and Evolution.

[70]  C. Geula,et al.  Motor neurons are rich in non-phosphorylated neurofilaments: cross-species comparison and alterations in ALS , 2000, Brain Research.

[71]  S. Harris,et al.  Activity patterns and feeding behaviour of the tree hyrax, Dendrohyrax arboreus, in the Parc National des Volcans, Rwanda , 1999 .

[72]  P. Hof,et al.  Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns , 1999, Journal of Chemical Neuroanatomy.

[73]  P. Morgane,et al.  Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and the macaque monkey (Macaca fascicularis) , 1998, Journal of Chemical Neuroanatomy.

[74]  R. Reep,et al.  PREHENSILE USE OF PERIORAL BRISTLES DURING FEEDING AND ASSOCIATED BEHAVIORS OF THE FLORIDA MANATEE (TRICHECHUS MANATUS LATIROSTRIS) , 1998 .

[75]  R. Reep,et al.  DISTRIBUTION AND INNERVATION OF FACIAL BRISTLES AND HAIRS IN THE FLORIDA MANATEE (TRICHECHUS MANATUS LATIROSTRIS) , 1998 .

[76]  Iwona Stepniewska,et al.  Multiple divisions of macaque precentral motor cortex identified with neurofilament antibody SMI-32 , 1997, Brain Research.

[77]  J. Morrison,et al.  Neurofilament and calcium‐binding proteins in the human cingulate cortex , 1997, The Journal of comparative neurology.

[78]  A. Burkhalter,et al.  Three distinct families of GABAergic neurons in rat visual cortex. , 1997, Cerebral cortex.

[79]  Paul Leonard Gabbott,et al.  Local‐circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: Morphology and quantitative distribution , 1997, The Journal of comparative neurology.

[80]  Leslie G. Ungerleider,et al.  Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways , 1996, The Journal of comparative neurology.

[81]  J. Morrison,et al.  Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey , 1996, The Journal of comparative neurology.

[82]  M. Cynader,et al.  Differential expression of neurofilament protein in the visual system of the vervet monkey , 1996, Brain Research.

[83]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions , 1996, The Journal of comparative neurology.

[84]  J. Morrison,et al.  Neurochemical phenotype of corticocortical connections in the macaque monkey: Quantitative analysis of a subset of neurofilament protein‐immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices , 1995, The Journal of comparative neurology.

[85]  L. Aiello,et al.  The Expensive-Tissue Hypothesis: The Brain and the Digestive System in Human and Primate Evolution , 1995, Current Anthropology.

[86]  J. Morrison,et al.  Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.

[87]  R. Reep,et al.  Manatee cerebral cortex: cytoarchitecture of the caudal region in Trichechus manatus latirostris. , 1995, Brain, behavior and evolution.

[88]  F. Rice Comparative Aspects of Barrel Structure and Development , 1995 .

[89]  Jeffrey H. D. White Neuropeptide Y: a central regulator of energy homeostasis , 1993, Regulatory Peptides.

[90]  Henning Scheich,et al.  Functional Organization of Auditory Cortex in the Mongolian Gerbil (Meriones unguiculatus). I. Electrophysiological Mapping of Frequency Representation and Distinction of Fields , 1993, The European journal of neuroscience.

[91]  P. Morgane,et al.  Calcium-binding protein-containing neuronal populations in mammalian visual cortex: a comparative study in whales, insectivores, bats, rodents, and primates. , 1993, Cerebral cortex.

[92]  P. Morgane,et al.  Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains , 1992, Brain Research.

[93]  P. Hof,et al.  Regional distribution of neurofilament and calcium-binding proteins in the cingulate cortex of the macaque monkey. , 1992, Cerebral cortex.

[94]  J. Morrison,et al.  The primary auditory cortex in cetacean and human brain: A comparative analysis of neurofilament protein-containing pyramidal neurons , 1992, Neuroscience Letters.

[95]  H. Oelschläger Development of the Olfactory and Terminalis Systems in Whales and Dolphins , 1992 .

[96]  J. Morrison,et al.  Parvalbumin in the monkey striate cortex: a quantitative immunoelectron-microscopy study , 1991, Brain Research.

[97]  M. Erlander,et al.  Two genes encode distinct glutamate decarboxylases , 1991, Neuron.

[98]  P. J. Waddell,et al.  Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. , 1991, The Journal of physiology.

[99]  M. Molinari,et al.  Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections , 1991, Brain Research.

[100]  S. Hendry,et al.  GABA neuronal subpopulations in cat primary auditory cortex: co-localization with calcium binding proteins , 1991, Brain Research.

[101]  J. Morrison,et al.  A subpopulation of primate corticocortical neurons is distinguished by somatodendritic distribution of neurofilament protein , 1991, Brain Research.

[102]  M. Celio,et al.  Calbindin D-28k and parvalbumin in the rat nervous system , 1990, Neuroscience.

[103]  T. O'Shea,et al.  Encephalization Quotients and Life-History Traits in the Sirenia , 1990 .

[104]  J. Morrison,et al.  Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans , 1990, The Journal of comparative neurology.

[105]  T. O'Shea,et al.  Regional brain morphometry and lissencephaly in the Sirenia. , 1990, Brain, behavior and evolution.

[106]  H. Swadlow Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: receptive fields and axonal properties. , 1989, Journal of neurophysiology.

[107]  J. Morrison,et al.  Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex , 1989, The Journal of comparative neurology.

[108]  W. Welker,et al.  Manatee cerebral cortex: cytoarchitecture of the frontal region in Trichechus manatus latirostris. , 1989, Brain, behavior and evolution.

[109]  H Haug,et al.  Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). , 1987, The American journal of anatomy.

[110]  E. G. Jones,et al.  Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  M. Celio,et al.  Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. , 1986, Science.

[112]  A. Mackay-Sim,et al.  The West Indian manatee (Trichechus manatus) lacks a vomeronasal organ. , 1985, Brain, behavior and evolution.

[113]  N. Fairall,et al.  Metabolic rate and body temperature of adult and juvenile hyrax (Procavia capensis). , 1984, Comparative biochemistry and physiology. A, Comparative physiology.

[114]  A. B. Irvine Manatee Metabolism and Its Influence on Distribution in Florida , 1983 .

[115]  J. R. Morris,et al.  Stable polymers of the axonal cytoskeleton: the axoplasmic ghost , 1982, The Journal of cell biology.

[116]  J. Mink,et al.  Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. , 1981, The American journal of physiology.

[117]  G. Gallivan,et al.  Metabolism and Respiration of the Amazonian Manatee (Trichechus inunguis) , 1980, Physiological Zoology.

[118]  Daniel Stanwood Hartman,et al.  Ecology and behavior of the Manatee (Trichechus manatus) in Florida , 1979 .

[119]  T. Woolsey,et al.  Comparative anatomical studies of the Sml face cortex with special reference to the occurrence of “barrels” in layer IV , 1975, The Journal of comparative neurology.

[120]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[121]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.