Self‐Powered Wireless Sensor Node Enabled by an Aerosol‐Deposited PZT Flexible Energy Harvester

Dr. G.-T. Hwang, J. H. Han, Dr. D. J. Joe, C. Baek, D. Y. Park, D. H. Kim, J. H. Park, Dr. C. K. Jeong, Prof. D. K. Kim, Prof. K. J. Lee Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro , Yuseong-gu Daejeon 34141 , Republic of Korea E-mail: keonlee@kaist.ac.kr Dr. V. Annapureddy, Dr. J.-J. Choi, Dr. J. Ryu Functional Ceramics Group Korea Institute of Materials Science (KIMS) 797 Changwondaero Seongsan-gu , Changwon , Gyeongnam 51508 , Republic of Korea E-mail: jhryu@kims.re.kr Prof. K.-I. Park Department of Energy Engineering Gyeongnam National University of Science and Technology (GNTech) 33, Dongjin-ro , Jinju , Gyeongsangnam-do 52725 , Republic of Korea

[1]  Donggu Im,et al.  In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. , 2013, ACS nano.

[2]  C. Randall,et al.  Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics , 2005 .

[3]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[4]  Xudong Wang,et al.  Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale , 2012 .

[5]  Geon-Tae Hwang,et al.  Large‐Area and Flexible Lead‐Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler , 2014 .

[6]  Wesley S. Hackenberger,et al.  High performance single crystal piezoelectrics: applications and issues , 2002 .

[7]  T. Kamel Grain size effect on the poling of soft Pb(Zr,Ti)O3 ferroelectric ceramics , 2008 .

[8]  Jun Akedo,et al.  Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr52/Ti48)O3) Thick Films Deposited by Aerosol Deposition Method , 1999 .

[9]  Sang-Gook Kim,et al.  MEMS power generator with transverse mode thin film PZT , 2005 .

[10]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[11]  Elfed Lewis,et al.  A comparative review of wireless sensor network mote technologies , 2009, 2009 IEEE Sensors.

[12]  M. Yan,et al.  Ceramic dielectrics : composition, processing, and properties , 1990 .

[13]  Geon-Tae Hwang,et al.  A Reconfigurable Rectified Flexible Energy Harvester via Solid‐State Single Crystal Grown PMN–PZT , 2015 .

[14]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[15]  Z. Wang Self‐Powered Nanosensors and Nanosystems , 2012, Advanced materials.

[16]  Zhuo Xu,et al.  Influence of Domain Size on the Scaling Effects in Pb(Mg1/3Nb2/3)O3-PbTiO3 Ferroelectric Crystals. , 2011, Scripta materialia.

[17]  X. Meng,et al.  The grain size effect of the Pb(Zr0.45Ti0.55)O3 thin films deposited on LaNiO3-coated silicon by modified sol–gel process , 2004 .

[18]  Seung Hwan Ko,et al.  A Hyper‐Stretchable Elastic‐Composite Energy Harvester , 2015, Advanced materials.

[19]  S. Priya,et al.  Stress-controlled Pb(Zr0.52Ti0.48)O3 thick films by thermal expansion mismatch between substrate and Pb(Zr0.52Ti0.48)O3 film , 2011 .

[20]  Zhong Lin Wang,et al.  High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. , 2010, Nano letters.

[21]  K. Shung,et al.  Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. , 2011, Progress in materials science.

[22]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[23]  J. Ryu,et al.  Effect of Film Thickness on the Piezoelectric Properties of Lead Zirconate Titanate Thick Films Fabricated by Aerosol Deposition , 2011 .

[24]  Shujun Zhang,et al.  Thickness‐Dependent Properties of Relaxor‐PbTiO3 Ferroelectrics for Ultrasonic Transducers , 2010, Advanced functional materials.

[25]  Shashank Priya,et al.  Enhanced domain contribution to ferroelectric properties in freestanding thick films , 2009 .

[26]  Myunghwan Byun,et al.  Flexible Crossbar‐Structured Resistive Memory Arrays on Plastic Substrates via Inorganic‐Based Laser Lift‐Off , 2014, Advanced materials.

[27]  Zhong Lin Wang,et al.  Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol , 2013 .

[28]  Jaeha Kim,et al.  Maximum energy transfer condition for piezoelectric energy harvesters with single pulsed vibration inputs , 2014 .

[29]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[30]  A. G. S. Filho,et al.  Raman scattering study of the PbZr 1¿x Ti x O 3 system: Rhombohedral-monoclinic-tetragonal phase transitions , 2002 .

[31]  Jong-Hyun Ahn,et al.  A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes , 2012 .

[32]  Chang Kyu Jeong,et al.  Self‐Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN‐PT Piezoelectric Energy Harvester , 2014, Advanced materials.

[33]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[34]  Yonggang Huang,et al.  Transient, biocompatible electronics and energy harvesters based on ZnO. , 2013, Small.

[35]  Hyuk-Sang Kwon,et al.  Self-powered deep brain stimulation via a flexible PIMNT energy harvester , 2015 .

[36]  J. V. Biggers,et al.  Preparation and reactivity of lead zirconate-titanate solid solutions produced by precipitation from aqueous solutions , 1978 .

[37]  Zhong Lin Wang,et al.  Self-powered system with wireless data transmission. , 2011, Nano letters.

[38]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[39]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[40]  Seok-Jin Yoon,et al.  Fabrication of flexible device based on PAN-PZT thin films by laser lift-off process , 2012 .

[41]  Yi Qi,et al.  Nanotechnology-enabled flexible and biocompatible energy harvesting , 2010 .

[42]  John A Rogers,et al.  Light Emission Characteristics and Mechanics of Foldable Inorganic Light‐Emitting Diodes , 2010, Advanced materials.

[43]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[44]  Geon-Tae Hwang,et al.  Flexible Piezoelectric Thin‐Film Energy Harvesters and Nanosensors for Biomedical Applications , 2015, Advanced healthcare materials.

[45]  Geon-Tae Hwang,et al.  Self-powered flexible inorganic electronic system , 2015 .

[46]  Jungho Ryu,et al.  Ubiquitous magneto-mechano-electric generator , 2015 .

[47]  John A Rogers,et al.  Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. , 2011, ACS nano.

[48]  John A Rogers,et al.  Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm , 2014, Proceedings of the National Academy of Sciences.

[49]  H. Kozuka,et al.  Single‐Step Dip Coating of Crack‐Free BaTiO3 Films >1 μm Thick: Effect of Poly(vinylpyrrolidone) on Critical Thickness , 2004 .

[50]  Gang Xu,et al.  Crystallization and concentration modulated tunable upconversion luminescence of Er3+ doped PZT nanofibers , 2015 .

[51]  Chang Kyu Jeong,et al.  Flexible and Large‐Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes , 2013 .

[52]  Chang Kyu Jeong,et al.  Self-powered fully-flexible light-emitting system enabled by flexible energy harvester , 2014 .