Gain, loss, and internal efficiency in interband cascade lasers emitting at λ=3.6–4.1μm

We employ a cavity-length study to determine the temperature variation of the internal loss and gain per unit current density in a ten-stage interband cascade laser that operated cw up to 269K with an emission wavelength of 4.05μm. The characteristic temperature for the gain per unit current density is 39K, which is slightly lower than T0 of the threshold current and is consistent with dominance by Auger recombination. The internal loss for the 150-μm-wide mesa devices increased from 11cm−1 at 78Kto28cm−1 at 275K.

[1]  Christopher L. Felix,et al.  Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells , 1998 .

[2]  Christoph H. Grein,et al.  Theoretical performance limits of 2.1–4.1 μm InAs/InGaSb, HgCdTe, and InGaAsSb lasers , 1995 .

[3]  Scott W. Corzine,et al.  High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy , 2006 .

[4]  M. Kisin,et al.  Experimental study of optical gain and loss in 3.4-3.6 /spl mu/m interband cascade lasers , 2003 .

[5]  Rui Q. Yang,et al.  Mid-infrared interband cascade lasers at thermoelectric cooler temperatures , 2006 .

[6]  Jerry R. Meyer,et al.  Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .

[7]  William W. Bewley,et al.  Correlating growth conditions with photoluminescence and lasing properties of mid-IR antimonide type II “W” structures , 2004 .

[8]  I. Vurgaftman,et al.  Interband cascade laser operating cw to 257 K at λ=3.7 μm , 2006 .

[9]  William W. Bewley,et al.  Molecular beam epitaxy growth and characterization of mid-IR type-II "W" diode lasers , 2005 .

[10]  Christopher L. Felix,et al.  Role of internal loss in limiting type-II mid-IR laser performance , 1998 .

[11]  William W. Bewley,et al.  High-power and high-efficiency midwave-infrared interband cascade lasers , 2006 .

[12]  Rui Q. Yang,et al.  Optical gain, loss, and transparency current in high performance mid-infrared interband cascade lasers , 2007 .

[13]  William W. Bewley,et al.  High-temperature interband cascade lasers emitting at λ=3.6–4.3μm , 2007 .

[14]  Rui Q. Yang,et al.  High-temperature and low-threshold midinfrared interband cascade lasers , 2005 .

[15]  Rui Q. Yang Infrared laser based on intersubband transitions in quantum wells , 1995 .

[16]  I. Vurgaftman,et al.  Interband cascade laser operating to 269 K at /spl lambda/=4.05 /spl mu/m , 2007 .

[17]  I. Vurgaftman,et al.  High-power, narrow-ridge, mid-infrared interband cascade lasers , 2007 .

[18]  I. Vurgaftman,et al.  High-Power Single-Mode Distributed-Feedback Interband Cascade Lasers for the Midwave-Infrared , 2007, IEEE Photonics Technology Letters.

[19]  Gregory Belenky,et al.  Experimental study of the optical gain and loss in InAs/GaInSb interband cascade lasers , 2003 .

[20]  William W. Bewley,et al.  Narrow-ridge interband cascade laser emitting high cw power , 2006 .

[21]  I. Vurgaftman,et al.  Investigation of mid-infrared type-II “W” diode lasers , 2006 .

[22]  Rui Q. Yang,et al.  Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy , 2004 .