N3M: Natural 3D Markers for Real-Time Object Detection and Pose Estimation
暂无分享,去创建一个
Nassir Navab | Stefan Hinterstoißer | Selim Benhimane | Stefan Hinterstoißer | Nassir Navab | Selim Benhimane
[1] Andrew Zisserman,et al. Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[2] Andrew Zisserman,et al. An Affine Invariant Salient Region Detector , 2004, ECCV.
[3] Cordelia Schmid,et al. Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.
[4] Mark Fiala,et al. ARTag, a fiducial marker system using digital techniques , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[5] G LoweDavid,et al. Distinctive Image Features from Scale-Invariant Keypoints , 2004 .
[6] Cordelia Schmid,et al. Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[7] E. Malis,et al. 2 1/2 D Visual Servoing , 1999 .
[8] John F. Canny,et al. A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[9] Christopher G. Harris,et al. A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.
[10] Roger Y. Tsai,et al. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..
[11] Carsten Steger,et al. Similarity Measures for Occlusion, Clutter, and Illumination Invariant Object Recognition , 2001, DAGM-Symposium.
[12] Vincent Lepetit,et al. Keypoint recognition using randomized trees , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] Rachid Deriche,et al. A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..
[14] Hirokazu Kato,et al. Marker tracking and HMD calibration for a video-based augmented reality conferencing system , 1999, Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99).
[15] Stephen M. Smith,et al. SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.
[16] Jiri Matas,et al. Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..
[17] Patrick Rives,et al. A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..
[18] Vincent Lepetit,et al. Feature Harvesting for Tracking-by-Detection , 2006, ECCV.
[19] Cordelia Schmid,et al. Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.
[20] Pietro Perona,et al. Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.
[21] Yehezkel Lamdan,et al. Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.
[22] Nassir Navab,et al. Fusion of 3D and Appearance Models for Fast Object Detection and Pose Estimation , 2006, ACCV.
[23] Robert C. Bolles,et al. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.
[24] Wolfgang Förstner,et al. A Framework for Low Level Feature Extraction , 1994, ECCV.
[25] Jiri Matas,et al. Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..
[26] Christopher Hunt,et al. Notes on the OpenSURF Library , 2009 .
[27] Andrew Zisserman,et al. Wide baseline stereo matching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).