Evolution of uranium and thorium minerals

Abstract The origins and near-surface distributions of the ~250 known uranium and/or thorium minerals elucidate principles of mineral evolution. This history can be divided into four phases. The first, from ~4.5 to 3.5 Ga, involved successive concentrations of uranium and thorium from their initial uniform trace distribution into magmatic-related fluids from which the first U4+ and Th4+ minerals, uraninite (ideally UO2), thorianite (ThO2), and coffinite (USiO4), precipitated in the crust. The second period, from ~3.5 to 2.2 Ga, saw the formation of large low-grade concentrations of detrital uraninite (containing several wt% Th) in the Witwatersrand-type quartz-pebble conglomerates deposited in a highly anoxic fluvial environment. Abiotic alteration of uraninite and coffinite, including radiolysis and auto-oxidation caused by radioactive decay and the formation of helium from alpha particles, may have resulted in the formation of a limited suite of uranyl oxide-hydroxides. Earth’s third phase of uranium mineral evolution, during which most known U minerals first precipitated from reactions of soluble uranyl (U6+O2)2+ complexes, followed the Great Oxidation Event (GOE) at ~2.2 Ga and thus was mediated indirectly by biologic activity. Most uraninite deposited during this phase was low in Th and precipitated from saline and oxidizing hydrothermal solutions (100 to 300 °C) transporting (UO2)2+-chloride complexes. Examples include the unconformity- and vein-type U deposits (Australia and Canada) and the unique Oklo natural nuclear reactors in Gabon. The onset of hydrothermal transport of (UO2)2+ complexes in the upper crust may reflect the availability of CaSO4- bearing evaporites after the GOE. During this phase, most uranyl minerals would have been able to form in the O2-bearing near-surface environment for the first time through weathering processes. The fourth phase of uranium mineralization began ~400 million years ago, as the rise of land plants led to non-marine organic-rich sediments that promoted new sandstone-type ore deposits. The modes of accumulation and even the compositions of uraninite, as well as the multiple oxidation states of U (4+, 5+, and 6+), are a sensitive indicator of global redox conditions. In contrast, the behavior of thorium, which has only a single oxidation state (4+) that has a very low solubility in the absence of aqueous F-complexes, cannot reflect changing redox conditions. Geochemical concentration of Th relative to U at high temperatures is therefore limited to special magmatic-related environments, where U4+ is preferentially removed by chloride or carbonate complexes, and at low temperatures by mineral surface reactions. The near-surface mineralogy of uranium and thorium provide a measure of a planet’s geotectonic and geobiological history. In the absence of extensive magmatic-related fluid reworking of the crust and upper mantle, uranium and thorium will not become sufficiently concentrated to form their own minerals or ore deposits. Furthermore, in the absence of surface oxidation, all but a handful of the known uranium minerals are unlikely to have formed.

[1]  D. Langmuir,et al.  Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits , 1978 .

[2]  W. Moore Amazon and Mississippi river concentrations of uranium, thorium, and radium isotopes , 1967 .

[3]  E. Foord,et al.  The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire , 1997 .

[4]  D. Catling,et al.  How Earth's atmosphere evolved to an oxic state: A status report , 2005 .

[5]  R. Ewing,et al.  Radiation-induced decomposition of U(VI) phases to nanocrystals of UO2 , 2005 .

[6]  A. Navrotsky,et al.  Thermodynamics of uranyl minerals: Enthalpies of formation of rutherfordine, UO2CO3, andersonite, Na2CaUO2(CO3)3(H2O)5, and grimselite, K3NaUO2(CO3)3H2O , 2005 .

[7]  Mortimer H. Staatz,et al.  Thorium Veins in the United States , 1974 .

[8]  M. Cathelineau,et al.  Fluid inclusion evidence of the differential migration of H2 and O2in the McArthur River unconformity-type uranium deposit (Saskatchewan, Canada). Possible role on post-ore modifications of the host rocks , 2003 .

[9]  A. Navrotsky,et al.  Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates , 2006 .

[10]  J. Crisp Rates of magma emplacement and volcanic output , 1984 .

[11]  James A. Davis,et al.  Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments , 2004 .

[12]  H. Frimmel Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa , 2005 .

[13]  K. Sims,et al.  U-series Constraints on Intraplate Basaltic Magmatism , 2003 .

[14]  D. Shoesmith,et al.  The influence of temperature on the anodic oxidation/dissolution of uranium dioxide , 2007 .

[15]  S. Roscoe,et al.  Evidence of anoxic to oxic atmospheric change during 2.45-2.22 Ga from lower and upper sub-Huronian paleosols, Canada , 1996 .

[16]  Sue B. Clark,et al.  The Gibbs free energies and enthalpies of formation of U6+ phases: An empirical method of prediction , 1999 .

[17]  R. Pik,et al.  Diffusion of radiogenic helium in natural uranium oxides , 2008 .

[18]  P. Swarzenski,et al.  The behavior of U- and Th-series nuclides in the estuarine environment , 2003 .

[19]  R. Ewing,et al.  Alteration of Natural Uranyl Oxide Hydrates in Si-Rich Groundwaters: Implications For Uranium Solubility , 1991 .

[20]  W. I. Finch Uranium provinces of North America; their definition, distribution, and models , 1996 .

[21]  Everett L. Shock,et al.  Environmental aqueous geochemistry of actinides , 1999 .

[22]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[23]  B. S. Hemingway Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits , 1982 .

[24]  R. Buick,et al.  Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia , 1999 .

[25]  Zachary Adam,et al.  Actinides and Life's Origins. , 2007, Astrobiology.

[26]  B. Tebo,et al.  Biogenic Uraninite Nanoparticles and Their Importance for Uranium Remediation , 2008 .

[27]  Takashi Murakami,et al.  Systematics and paragenesis of uranium minerals , 1999 .

[28]  G. Wasserburg,et al.  The U-Th-Pb systematics in hot springs on the East Pacific Rise at 21°N and Guaymas Basin , 1986 .

[29]  J. Banfield,et al.  Geomicrobiology of uranium , 1999 .

[30]  Kenneth C. Mills,et al.  Thermodynamic data for inorganic sulphides, selenides and tellurides , 1974 .

[31]  B. Rasmussen,et al.  Diagenesis of low-mobility elements (Ti, REEs, Th) and solid bitumen envelopes in Permian Kennedy Group sandstone, western Australia , 1994 .

[32]  Y. Eyal,et al.  An Annealing Study of Alpha-Decay Damage in Natural UO2 and ThO2 , 1987 .

[33]  J. Fitzpatrick,et al.  Additional studies on mixed uranyl oxide-hydroxide hydrate alteration products of uraninite from the Palermo and Ruggles granitic pegmatites, Grafton County, New Hampshire , 1997 .

[34]  D. Sverjensky,et al.  Geochemical modeling of the formation of an unconformity-type uranium deposit , 1996 .

[35]  K. M. Beck,et al.  Coprecipitation of Uranium(VI) with Calcite: XAFS, micro-XAS, and luminescence characterization , 2001 .

[36]  Arthur Holmes The Association of Lead with Uranium in Rock-Minerals, and Its Application to the Measurement of Geological Time , 1911 .

[37]  Jeff P. Raffensperger,et al.  The formation of unconformity-type uranium ore deposits; 2, Coupled hydrochemical modeling , 1995 .

[38]  Jizhong Zhou,et al.  In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. , 2007, Environmental science & technology.

[39]  Janusz Janeczek,et al.  Mineralogy and geochemistry of natural fission reactors in Gabon , 1999 .

[40]  M. Avalos-Borja,et al.  Crosslinking of recycled polyethylene by gamma and electron beam irradiation , 1998 .

[41]  Robert J. Finch,et al.  The corrosion of uraninite under oxidizing conditions , 1992 .

[42]  W. E. Galloway,et al.  Reply to the comments of W. Helland-Hansen on "Towards the standardization of sequence stratigraphy" by Catuneanu et al. (Earth-Sciences Review 92(2009)1-33) , 2009 .

[43]  A. Wilde,et al.  Geology of the Nabarlek uranium deposit, Northern Territory, Australia , 1987 .

[44]  M. Cuney,et al.  RECENT AND NOT-SO-RECENT DEVELOPMENTS IN URANIUM DEPOSITS AND IMPLICATIONS FOR EXPLORATION , 2009 .

[45]  D. Shoesmith,et al.  The effect of pH on the anodic dissolution of SIMFUEL (UO2) , 2006 .

[46]  R. Ewing,et al.  X-ray powder diffraction study of annealed uraninite , 1991 .

[47]  G. Waychunas,et al.  Uranium(VI) adsorption to ferrihydrite: Application of a surface complexation model , 1994 .

[48]  Gilles Levresse,et al.  Highly oxidised gold skarn fluids evolution in the Mezcala deposit, Guerrero, Mexico , 2003 .

[49]  S. Sutton,et al.  Uranyl Incorporation in Natural Calcite , 2003 .

[50]  D. Thomas,et al.  Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta , 2007 .

[51]  M. Schindler,et al.  THE STEREOCHEMISTRY AND CHEMICAL COMPOSITION OF INTERSTITIAL COMPLEXES IN URANYL-OXYSALT MINERALS , 2008 .

[52]  S. Wasserman,et al.  The Speciation of Uranium in a Smectite Clay: Evidence for Catalysed Uranyl Reduction , 1997 .

[53]  G. Garuti,et al.  Zirconolite and Zr-Th-U minerals in chromitites of the finero complex, Western Alps, Italy: Evidence for carbonatite-type metasomatism in a subcontinental mantle plume , 2004 .

[54]  Matthias Kohler,et al.  Experimental Investigation and Modeling of Uranium (VI) Transport Under Variable Chemical Conditions , 1996 .

[55]  D. Groves,et al.  Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: oxygen‐deficient atmosphere or hydrothermal alteration? , 2002 .

[56]  J. Čejka Infrared spectroscopy and thermal analysis of the uranyl minerals , 1999 .

[57]  Philippe Blanc,et al.  Natural fission reactors in the Franceville basin, Gabon: A review of the conditions and results of a “critical event” in a geologic system , 1996 .

[58]  F. Gauthier-Lafaye,et al.  Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere , 2003 .

[59]  W. Weber,et al.  Molecular dynamics simulation of energetic uranium recoil damage in zircon , 2006 .

[60]  Aurora. Colorada THE CHEMICAL EVOLUTION AND PARAGENESIS OF URANIUM MINERALS FROM THE RUGGLES AND PALERMO GRANITIC PEGMATITES , 2022 .

[61]  P. Santschi,et al.  Radionuclides in aquatic environments , 1989 .

[62]  F. Stadermann,et al.  THE APPLICATION OF HRTEM TECHNIQUES AND NANOSIMS TO CHEMICALLY AND ISOTOPICALLY CHARACTERIZE GEOBACTER SULFURREDUCENS SURFACES , 2005 .

[63]  Everett L. Shock,et al.  Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures , 1997 .

[64]  Norman H. Sleep,et al.  Hotspots and Mantle Plumes' Some Phenomenology , 1990 .

[65]  L. E. Mordberg Thorium in crandallite-group minerals: an example from a Devonian bauxite deposit, Timan, Russia , 2004, Mineralogical Magazine.

[66]  N. Kelly,et al.  Zircon Tiny but Timely , 2007 .

[67]  K. Farley,et al.  The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite , 2009 .

[68]  R. Ewing,et al.  Description and classification of uranium oxide hydrate sheet anion topologies , 1996 .

[69]  C. Fabre,et al.  A detailed fluid inclusion study in silicified breccias from the Kombolgie sandstones (Northern Territory, Australia): inferences for the genesis of middle-Proterozoic unconformity-type uranium deposits , 2003 .

[70]  M. Palmer,et al.  Uranium in the oceans: Where it goes and why , 1991 .

[71]  G. Smits (U-Th)-bearing silicates in reefs of the Witwatersrand, South Africa , 1989 .

[72]  R. Ewing,et al.  Alteration of uranium minerals in the Koongarra deposit, Australia: Unweathered zone , 1992 .

[73]  C. Frondel Mineral composition of gummite , 1955 .

[74]  R. Ewing,et al.  Nanoscale occurrence of Pb in an Archean zircon , 2004 .

[75]  M. Newville,et al.  On the valency state of radiogenic lead in zircon and its consequences , 2009 .

[76]  E. Hiatt,et al.  Fluids in sedimentary basins: an introduction , 2003 .

[77]  A. Navrotsky,et al.  Stability of Peroxide-Containing Uranyl Minerals , 2003, Science.

[78]  Robert M. Hazen,et al.  Genesis: The Scientific Quest for Life's Origin , 2005 .

[79]  H. Ohmoto,et al.  Mineralogy, Fluid Inclusions, and Stable Isotopes of the Echo Bay U-Ni-Ag-Cu Deposits, Northwest Territories, Canada , 1973 .

[80]  J. Kramers,et al.  The evolution of matter : from the big bang to the present day earth , 2008 .

[81]  T. M. Harrison,et al.  Extinct 244Pu in Ancient Zircons , 2004, Science.

[82]  D. Sverjensky The role of migrating oil field brines in the formation of sediment-hosted Cu-rich deposits , 1987 .

[83]  Edward R. Landa,et al.  Microbial reduction of uranium , 1991, Nature.

[84]  M. Goldhaber,et al.  Origin of a South Texas roll-type deposit; II, Sulfide petrology and sulfur isotope studies , 1978 .

[85]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[86]  A. Navrotsky,et al.  Thermodynamic properties of soddyite from solubility and calorimetry measurements , 2007 .

[87]  S. Sunder,et al.  Geochemistry of the Cigar Lake Uranium Deposit: XPS Studies , 1996 .

[88]  William J. Weber,et al.  Radiation Effects in Zircon , 2003 .

[89]  C. Lundstrom Uranium-series Disequilibria in Mid-ocean Ridge Basalts: Observations and Models of Basalt Genesis , 2003 .

[90]  Peter C. Burns,et al.  The crystal chemistry of uranium , 1999 .

[91]  P. Burns,et al.  Wyartite: Crystallographic evidence for the first pentavalent-uranium mineral , 1999 .

[92]  B. Tebo,et al.  Indirect UO2 oxidation by Mn(II)-oxidizing spores of Bacillus sp. strain SG-1 and the effect of U and Mn concentrations. , 2008, Environmental science & technology.

[93]  R. Ewing,et al.  The crystal chemistry of hexavalent uranium; polyhedron geometries, bond-valence parameters, and polymerization of polyhedra , 1997 .

[94]  H. Keppler,et al.  Role of fluids in transport and fractionation of uranium and thorium in magmatic processes , 1990, Nature.

[95]  H. Frimmel,et al.  Recent Developments Concerning the Geological History and Genesis of the Witwatersrand Gold Deposits, South Africa , 2002 .

[96]  R. Naudet Oklo: des réacteurs nucléaires fossiles , 1994 .

[97]  J. E. T. Horne,et al.  Systematic Mineralogy of Uranium and Thorium , 1959 .

[98]  P. S. Kumar,et al.  Fertility of Late Archaean basement granite in the vicinity of U-mineralized Neoproterozoic Bhima basin, peninsular India , 2002 .

[99]  Hazen,et al.  Review Paper. Mineral evolution , 2008 .

[100]  A. J. Kaufman,et al.  A Whiff of Oxygen Before the Great Oxidation Event? , 2007, Science.

[101]  G. Garven,et al.  The formation of unconformity-type uranium ore deposits; 1, Coupled groundwater flow and heat transport modeling , 1995 .

[102]  B. Bourdon,et al.  Insights into Magma Genesis at Convergent Margins from U-series Isotopes , 2003 .

[103]  R. Vochten,et al.  Transformation of schoepite into the uranyl oxide hydrates: Becquerelite, billietite and wölsendorfite , 1990 .

[104]  B. Wood,et al.  Mineral-Melt Partitioning of Uranium, Thorium and Their Daughters , 2003 .

[105]  K. Farley,et al.  The influence of natural radiation damage on helium diffusion kinetics in apatite , 2006 .

[106]  C. Alexander,et al.  Uranium in rivers and estuaries of globally diverse, smaller watersheds , 2000 .

[107]  B. Honeyman,et al.  Uranium (VI) sorption to hematite in the presence of humic acid , 1999 .

[108]  F. Hawthorne,et al.  The Crystal Chemistry of the Phosphate Minerals , 2002 .

[109]  D. Shoesmith,et al.  X-ray photoelectron spectroscopy study of anodically oxidized SIMFUEL surfaces , 2004 .

[110]  Yilin Fang,et al.  Uranium removal from groundwater via in situ biostimulation: Field-scale modeling of transport and biological processes. , 2007, Journal of contaminant hydrology.

[111]  James A. Davis,et al.  Simulation of reactive transport of uranium(VI) in groundwater with variable chemical conditions , 2006 .

[112]  M. Schindler,et al.  A BOND-VALENCE APPROACH TO THE URANYL-OXIDE HYDROXY-HYDRATE MINERALS: CHEMICAL COMPOSITION AND OCCURRENCE , 2004 .

[113]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[114]  Robert J. Finch,et al.  Uranium : mineralogy, geochemistry and the environment , 1999 .

[115]  P. Reiners,et al.  Past, Present, and Future of Thermochronology , 2005 .

[116]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[117]  D. Grandstaff Origin of uraniferous conglomerates at Elliot Lake, Canada and Witwatersrand, South Africa: Implications for oxygen in the Precambrian atmosphere , 1980 .

[118]  M. Freund,et al.  XPS spectra of uranyl minerals and synthetic uranyl compounds. I: The U 4f spectrum , 2009 .

[119]  M. Fayek,et al.  Characterization of multiple fluid-flow events and rare-earth-element mobility associated with formation of unconformity-type uranium deposits in the Athabasca Basin, Saskatchewan , 1997 .

[120]  K. Turekian,et al.  Uranium determinations in deep-sea sediments and natural waters using fission tracks , 1970 .

[121]  J. Nash,et al.  Geology and concepts of genesis of important types of uranium deposits , 1981 .

[122]  K. Nealson,et al.  Sediment bacteria: who's there, what are they doing, and what's new? , 1997, Annual review of earth and planetary sciences.

[123]  R. Ewing,et al.  Radiation damage and alteration of zircon from a 3.3 Ga porphyritic granite from the Jack Hills, Western Australia , 2007 .

[124]  D. Langmuir,et al.  Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site-binding model , 1985 .

[125]  Peter C. Burns,et al.  U6+ MINERALS AND INORGANIC COMPOUNDS: INSIGHTS INTO AN EXPANDED STRUCTURAL HIERARCHY OF CRYSTAL STRUCTURES , 2005 .

[126]  G. Bernhard,et al.  Uranium(VI) sorption onto phyllite and selected minerals in the presence of humic acid , 2000 .

[127]  D. Sverjensky,et al.  Hydrothermal alteration and the chemistry of ore-forming fluids in an unconformity-type uranium deposit , 1995 .

[128]  R. Ewing,et al.  Mechanisms of lead release from uraninite in the natural fission reactors in Gabon , 1995 .

[129]  D. Sverjensky Oil field brines as ore-forming solutions , 1984 .

[130]  J. Sharp,et al.  Systematic investigation of the product of microbial U(VI) reduction by different bacteria , 2008 .

[131]  D. Shoesmith,et al.  Surface electrochemistry of UO2 in dilute alkaline hydrogen peroxide solutions , 2004 .

[132]  R. Finch THERMODYNAMIC STABILITIES OF U(VI) MINERALS: ESTIMATED AND OBSERVED RELATIONSHIPS , 1996 .

[133]  Fareeduddin Significance of the occurrence of detrital pyrite and uraninite on the Kalasapura conglomerate, Karnataka , 1990 .

[134]  Keld Alstrup Jensen,et al.  The Okélobondo natural fission reactor, southeast Gabon: Geology, mineralogy, and retardation of nuclear-reaction products , 2001 .

[135]  D. Davidson,et al.  Phosphate deposits of the world: Volume 2. Phosphate rock resources. , 1989 .

[136]  D. Sverjensky,et al.  Pre-ore hydrothermal alteration in an unconformity-type uranium deposit , 1995 .

[137]  Y. Sugimura,et al.  Thorium concentration and the activity ratios230Th/232Th and228Th/232Th in sea water in the western North Pacific , 1970 .

[138]  H. Beller Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans , 2005, Applied and Environmental Microbiology.

[139]  P. Burns,et al.  The structure of hügelite, an arsenate of the phosphuranylite group, and its relationship to dumontite , 2003, Mineralogical Magazine.

[140]  W. Weber,et al.  Dynamic annealing of defects in irradiated zirconia-based ceramics , 2008 .

[141]  William J. Weber,et al.  Alpha-decay-induced amorphization in complex silicate structures , 1993 .

[142]  R. Ewing,et al.  Crystal chemistry and radiation-induced amorphization of P-coffinite from the natural fission reactor at Bangombé, Gabon , 2009 .

[143]  P. Burns,et al.  The role of water in the structures of synthetic hallimondite, Pb2[(UO2)(AsO4)2](H2O)n and synthetic parsonsite, Pb2[(UO2)(PO4)2](H2O)n, 0 ≤ n ≤ 0.5 , 2005 .