Motion segmentation and abnormal behavior detection via behavior clustering

We consider a change detection problem in video surveillance applications and propose busy-idle rates, meaningful and easy to compute features, to characterize the behavior profile of a given pixel. We describe the geometry independence property of these features, and use them to model the typical behavior that is observed in training sequences. Using a small number of samples for each pixel we generate behavior clusters, wherein pixels with similar behavior profiles fall into the same cluster. We then generate probabilistic models corresponding to behavior clusters, and use these models to perform abnormal behavior detection.

[1]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[2]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[3]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Janusz Konrad,et al.  3.10 – Motion Detection and Estimation , 2005 .

[5]  Guojun Lu,et al.  Segmentation of moving objects in image sequence: A review , 2001 .

[6]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[8]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  F. Ashcroft,et al.  VIII. References , 1955 .

[10]  P. Bouthemy,et al.  Recovery of moving object masks in an image sequence using local spatiotemporal contextual information , 1993 .

[11]  Alessandro Neri,et al.  Automatic moving object and background separation , 1998, Signal Process..

[12]  Janusz Konrad,et al.  CHAPTER 3 – Motion Detection and Estimation , 2009 .