General error mitigation for quantum circuits

A general method to mitigate the effect of errors in quantum circuits is outlined. The method is developed in sight of characteristics that an ideal method should possess and to ameliorate an existing method which only mitigates state preparation and measurement errors. The method is tested on different IBM Q quantum devices, using randomly generated circuits with up to four qubits. A large majority of results show significant error mitigation.

[1]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[2]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[3]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[4]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[5]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[6]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[7]  Yao Lu,et al.  Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system , 2019, Nature Communications.

[8]  Simon Benjamin,et al.  Error-Mitigated Digital Quantum Simulation. , 2018, Physical review letters.

[9]  Peter Maunz,et al.  Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.

[10]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[11]  M. A. Rol,et al.  Experimental error mitigation via symmetry verification in a variational quantum eigensolver , 2019, Physical Review A.

[12]  Jens Koch,et al.  Randomized benchmarking and process tomography for gate errors in a solid-state qubit. , 2008, Physical review letters.

[13]  Daniel Greenbaum,et al.  Introduction to Quantum Gate Set Tomography , 2015, 1509.02921.

[14]  Jay M. Gambetta,et al.  Self-Consistent Quantum Process Tomography , 2012, 1211.0322.

[15]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[16]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[17]  M. Neeley Process Tomography of Quantum Memory in a Josephson Phase Qubit , 2008 .

[18]  V. Sergienko,et al.  Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf , 2017, Nature Communications.

[19]  Michael R. Geller Rigorous measurement error correction , 2020 .

[20]  R. Landauer Is quantum mechanics useful , 1995 .

[21]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[22]  J. Carter,et al.  Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.

[23]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[24]  Ying Li,et al.  Quantum computation with universal error mitigation on a superconducting quantum processor , 2018, Science Advances.

[25]  Ny,et al.  Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits , 2009, 0910.1118.

[26]  Simon C. Benjamin,et al.  Learning-based quantum error mitigation , 2020 .

[27]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[28]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[29]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.

[30]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[31]  J. Wrachtrup,et al.  Quantum process tomography and Linblad estimation of a solid-state qubit , 2006, quant-ph/0601167.

[32]  Michal Oszmaniec,et al.  Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography , 2019, Quantum.

[33]  Robert Joynt,et al.  Error Mitigation in Quantum Computers subject to Spatially Correlated Noise , 2018, 1812.07076.