Convergence of Hermite and Hermite-Fejér Interpolation of Higher Order for Freud Weights

We investigate weighted Lp(0<p<∞) convergence of Hermite and Hermite–Fejer interpolation polynomials of higher order at the zeros of Freud orthogonal polynomials on the real line. Our results cover as special cases Lagrange, Hermite–Fejer and Krylov–Stayermann interpolation polynomials.

[1]  The Weighted Lp-Norms of Orthonormal Polynomials for Freud Weights , 1994 .

[2]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[3]  Hermite and Hermite-Fejér interpolations of higher order. II (mean convergence) , 1990 .

[4]  Pointwise convergence of Hermite-Fejér interpolation of higher order for Freud weights , 1994 .

[5]  D. Lubinsky,et al.  Mean convergence of Lagrange interpolation for Erdos weights , 1993 .

[6]  T. Hermann On Hermite-Fejér type interpolation , 1984 .

[7]  Yuan Xu,et al.  Weighted Lp convergence of hermite interpolation of higher order , 1992 .

[8]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[9]  S. Damelin,et al.  Necessary and Sufficient Conditions for Mean Convergence of Lagrange Interpolation for Erdős Weights , 1993, Canadian Journal of Mathematics.

[10]  Regular Article: Uniform or Mean Convergence of Hermite–Fejér Interpolation of Higher Order for Freud Weights , 1999 .

[11]  H. Knoop,et al.  On Hermite-Fejér type interpolation , 1983, Bulletin of the Australian Mathematical Society.

[12]  Necessary and sufficient conditions for mean convergence of Lagrange interpolation for Freud weights , 1995 .

[13]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[14]  D. Lubinsky,et al.  Hermite and Hermite-Fejer Interpolation and Associated Product Integration Rules on the Real Line: The L 1 Theory , 1992, Canadian Journal of Mathematics.

[15]  Péter Vértesi Hermite-Fejér interpolations of higher order. I , 1989 .

[16]  D. Lubinsky,et al.  Hermite and Hermite-Feje´r interpolation and associated product integration rules on the real line: the L ∞ theory , 1992 .

[17]  Doron S. Lubinsky,et al.  Erratum: Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[18]  Hrushikesh Narhar Mhaskar,et al.  Introduction to the theory of weighted polynomial approximation , 1997, Series in approximations and decompositions.

[19]  A. L. Levin,et al.  Lp Markov-Bernstein Inequalities for Freud Weights , 1994 .

[20]  A. L. Levin,et al.  Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[21]  Mean convergence of Hermite-Feje´r and Hermite interpolation for Freud weights , 1998 .

[22]  Convergence of Lagrange Interpolation for Freud Weights in Weighted L p (ℝ), 0 , 1994 .

[23]  Paul Nevai,et al.  Mean convergence of Lagrange interpolation. III , 1984 .

[24]  Paul Neval,et al.  Ge´za Freud, orthogonal polynomials and Christoffel functions. A case study , 1986 .

[25]  J. Szabados,et al.  Weighted Lagrange and Hermite–Fejér interpolation on the real line , 1997 .