Inhibition of gamma-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures.

The transport of gamma-aminobutyric (GABA) limits the overspill from the synaptic cleft and serves to maintain a constant extracellular level of GABA. Two transporters, GABA transporter-1 (GAT-1) and GAT-3, are the most likely candidates for regulating GABA transport in the brain. Drugs acting either selectively or nonselectively at GATs exert distinct anticonvulsant effects, presumably because of distinct regions of action. Here I shall give a brief review of the localization and physiology of GATs and describe effects of selective and nonselective inhibitors thereof in different animal models of epilepsy.

[1]  P. Dean,et al.  Topographical organization of the nigrotectal projection in rat: Evidence for segregated channels , 1992, Neuroscience.

[2]  A. Fink-Jensen,et al.  Anticonvulsant properties of two GABA uptake inhibitors NNC 05-2045 and NNC 05-2090, not acting preferentially on GAT-1 , 1997, Epilepsy Research.

[3]  Boris Barbour,et al.  Nonvesicular release of neurotransmitter , 1993, Neuron.

[4]  R. Barrett-Jolley Nipecotic acid directly activates GABAA‐like ion channels , 2001, British journal of pharmacology.

[5]  JM Solis,et al.  Pharmacological characterization of GABAB-mediated responses in the CA1 region of the rat hippocampal slice , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  N. Nelson,et al.  Expression of a mouse brain cDNA encoding novel gamma-aminobutyric acid transporter. , 1992, The Journal of biological chemistry.

[7]  M. F. Jackson,et al.  Activity-dependent enhancement of hyperpolarizing and depolarizing γ-aminobutyric acid (GABA) synaptic responses following inhibition of GABA uptake by tiagabine , 1999, Epilepsy Research.

[8]  M. Raiteri,et al.  Regional differences in the synaptosomal uptake of 3H-gamma-aminobutyric acid and 14C-glutamate and possible role of exchange processes. , 1974, The Journal of pharmacology and experimental therapeutics.

[9]  T. Branchek,et al.  Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. , 1994, Receptors & channels.

[10]  C. Ribak,et al.  GABA plasma membrane transporters, GAT‐1 and GAT‐3, display different distributions in the rat hippocampus , 1996 .

[11]  E. A. Schwartz,et al.  A GABA transporter operates asymmetrically and with variable stoichiometry , 1994, Neuron.

[12]  J. P. Bennett,et al.  A postsynaptic GABA transporter in rat spinal motor neurones , 1992, Neuroscience Letters.

[13]  C. Gundersen,et al.  Glia of the Cholinergic Electromotor Nucleus of Torpedo Are the Source of the cDNA Encoding a GAT‐1‐Like GABA Transporter , 1994, Journal of neurochemistry.

[14]  G. Westbrook,et al.  Synapse Density Regulates Independence at Unitary Inhibitory Synapses , 2003, The Journal of Neuroscience.

[15]  D. Kullmann,et al.  GABA uptake regulates cortical excitability via cell type–specific tonic inhibition , 2003, Nature Neuroscience.

[16]  A. Schousboe,et al.  Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in gabaergic neurons: Vesicular versus non-vesicular release of GABA , 1993, Neuroscience.

[17]  A. Bendahan,et al.  Two pharmacologically distinct sodium- and chloride-coupled high-affinity gamma-aminobutyric acid transporters are present in plasma membrane vesicles and reconstituted preparations from rat brain. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. Draguhn,et al.  Laminar difference in GABA uptake and GAT‐1 expression in rat CA1 , 1998, The Journal of physiology.

[19]  A. Draguhn,et al.  Presence of γ-aminobutyric acid transporter mRNA in interneurons and principal cells of rat hippocampus , 2000, Neuroscience Letters.

[20]  E. Jorgensen,et al.  Identification and characterization of the vesicular GABA transporter , 1997, Nature.

[21]  I. Módy,et al.    Receptors with Different Affinities Mediate Phasic and Tonic GABAA Conductances in Hippocampal Neurons , 2002, The Journal of Neuroscience.

[22]  L. Yunger,et al.  Novel inhibitors of gamma-aminobutyric acid (GABA) uptake: anticonvulsant actions in rats and mice. , 1984, The Journal of pharmacology and experimental therapeutics.

[23]  C. McBain,et al.  GABAB receptor modulation of excitatory and inhibitory synaptic transmission onto rat CA3 hippocampal interneurons , 2003, The Journal of physiology.

[24]  M. Quick,et al.  Neurotransmitter Transporters: Regulators of Function and Functional Regulation , 1998, The Journal of Membrane Biology.

[25]  S. Bröer,et al.  Functional Characterization of the Betaine/γ-Aminobutyric Acid Transporter BGT-1 Expressed in Xenopus Oocytes* , 1999, The Journal of Biological Chemistry.

[26]  G. Ojemann,et al.  Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy , 1999, Neurology.

[27]  R. Browning,et al.  Modification of electroshock and pentylenetetrazol seizure patterns in rats affer precollicular transections , 1986, Experimental Neurology.

[28]  C. Ribak,et al.  Increased expression of GABA transporters, GAT-1 and GAT-3, in the deafferented superior colliculus of the rat , 1998, Brain Research.

[29]  G. Westbrook,et al.  Paradoxical reduction of synaptic inhibition by vigabatrin. , 2001, Journal of neurophysiology.

[30]  M. Quick,et al.  Upregulation of γ-aminobutyric acid transporter expression: role of alkylated γ-aminobutyric acid derivatives , 2001 .

[31]  P. Suzdak,et al.  (R)‐N‐[4,4‐Bis(3‐Methyl‐2‐Thienyl)but‐3‐en‐1‐yl]Nipecotic Acid Binds with High Affinity to the Brain γ‐Aminobutyric Acid Uptake Carrier , 1990, Journal of neurochemistry.

[32]  I. Módy,et al.  Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release , 1991, Brain Research.

[33]  Istvan Mody,et al.  Distinguishing Between GABAA Receptors Responsible for Tonic and Phasic Conductances , 2001, Neurochemical Research.

[34]  B. Giros,et al.  Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases , 1997, FEBS letters.

[35]  S. Cull-Candy,et al.  Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. , 1996, The Journal of physiology.

[36]  R. Robey,et al.  Cloning of a Na(+)- and Cl(-)-dependent betaine transporter that is regulated by hypertonicity. , 1992, The Journal of biological chemistry.

[37]  B. Gähwiler,et al.  Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. , 1992, Journal of neurophysiology.

[38]  Ariel Y. Deutch,et al.  Functional expression and CNS distribution of a β-alanine-sensitive neuronal GABA transporter , 1992, Neuron.

[39]  R. Nicoll,et al.  Local and diffuse synaptic actions of GABA in the hippocampus , 1993, Neuron.

[40]  R. Shigemoto,et al.  Distinct localization of GABAB receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus , 2002, The European journal of neuroscience.

[41]  Mark J. Wall,et al.  Development of Action Potential‐dependent and Independent Spontaneous GABAA Receptor‐mediated Currents in Granule Cells of Postnatal Rat Cerebellum , 1997, The European journal of neuroscience.

[42]  A. Schousboe,et al.  Kinetic Characterization of Inhibition of γ‐Aminobutyric Acid Uptake into Cultured Neurons and Astrocytes by 4,4‐Diphenyl‐3‐Butenyl Derivatives of Nipecotic Acid and Guvacine , 1988, Journal of neurochemistry.

[43]  P. Suzdak,et al.  Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. , 1991, European journal of pharmacology.

[44]  M. Caplan,et al.  Polarized Expression of GABA Transporters in Madin-Darby Canine Kidney Cells and Cultured Hippocampal Neurons (*) , 1996, The Journal of Biological Chemistry.

[45]  M. Neal,et al.  THE UPTAKE OF [3H]GABA BY SLICES OF RAT CEREBRAL CORTEX , 1968, Journal of neurochemistry.

[46]  K. Krnjević,et al.  Systemic CI-966, a new γ-aminobutyric acid uptake blocker, enhances γ-aminobutyric acid action in CA1 pyramidal layer in situ , 1990 .

[47]  J. Ferrendelli,et al.  Relative Anticonvulsant Effects of GABAmimetic and GABA Modulatory Agents , 1992, Epilepsia.

[48]  P. Somogyi,et al.  Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  C. Kellinghaus,et al.  Tiagabine-related non-convulsive status epilepticus in partial epilepsy: three case reports and a review of the literature , 2002, Seizure.

[50]  L. Borden GABA TRANSPORTER HETEROGENEITY: PHARMACOLOGY AND CELLULAR LOCALIZATION , 1996, Neurochemistry International.

[51]  L. Willmore,et al.  Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis , 2000, Experimental Brain Research.

[52]  A. Roepstorff,et al.  Factors contributing to the decay of the stimulus-evoked IPSC in rat hippocampal CA1 neurons. , 1994, Journal of neurophysiology.

[53]  N. Brecha,et al.  Immunoreactivity for the GABA transporter-1 and GABA transporter-3 is restricted to astrocytes in the rat thalamus. A light and electron-microscopic immunolocalization , 1998, Neuroscience.

[54]  M. Kavanaugh,et al.  Tyrosine 140 of the γ-Aminobutyric Acid Transporter GAT-1 Plays a Critical Role in Neurotransmitter Recognition* , 1997, The Journal of Biological Chemistry.

[55]  H. Lester,et al.  Cloning and expression of a rat brain GABA transporter. , 1990, Science.

[56]  N. Brecha,et al.  Neuronal and glial localization of the GABA transporter GAT‐1 in the cerebellar cortex , 1996, Neuroreport.

[57]  M. Pangalos,et al.  Comparative immunohistochemical localisation of GABAB1a, GABAB1b and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion , 2001, Neuroscience.

[58]  Robert A. Pearce,et al.  Physiological evidence for two distinct GABAA responses in rat hippocampus , 1993, Neuron.

[59]  E. A. Schwartz,et al.  Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. , 1987, Science.

[60]  G. Westbrook,et al.  Desensitized states prolong GABAA channel responses to brief agonist pulses , 1995, Neuron.

[61]  David Attwell,et al.  Multiple modes of GABAergic inhibition of rat cerebellar granule cells , 2003, The Journal of physiology.

[62]  Istvan Mody,et al.  Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. , 2002, Journal of neurophysiology.

[63]  A. Steiger,et al.  The GABA uptake inhibitor tiagabine promotes slow wave sleep in normal elderly subjects , 2001, Neurobiology of Aging.

[64]  K. Staley,et al.  Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors , 1995, Science.

[65]  M. Danhof,et al.  Effect of amygdala kindling on the central nervous system effects of tiagabine: EEG effects versus brain GABA levels , 2000, British journal of pharmacology.

[66]  P. Suzdak,et al.  NNC-711, a novel potent and selective gamma-aminobutyric acid uptake inhibitor: pharmacological characterization. , 1992, European journal of pharmacology.

[67]  T. Branchek,et al.  Tiagabine, SK&F 89976-A, CI-966, and NNC-711 are selective for the cloned GABA transporter GAT-1. , 1994, European journal of pharmacology.

[68]  N. O. Dalby GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors , 2000, Neuropharmacology.

[69]  M. Quick,et al.  Regulation of γ-Aminobutyric Acid (GABA) Transporters by Extracellular GABA* , 1999, The Journal of Biological Chemistry.

[70]  M. Caplan,et al.  Identification of Sorting Determinants in the C-terminal Cytoplasmic Tails of the γ-Aminobutyric Acid Transporters GAT-2 and GAT-3* , 1998, The Journal of Biological Chemistry.

[71]  P. Dean,et al.  Anticonvulsant role of nigrotectal projection in the maximal electroshock model of epilepsy—II. Pathways from substantia nigra pars lateralis and adjacent peripeduncular area to the dorsal midbrain , 1992, Neuroscience.

[72]  S. Mandiyan,et al.  Cloning of the human brain GABA transporter , 1990, FEBS letters.

[73]  A. Schousboe,et al.  Selective inhibitors of glial GABA uptake: synthesis, absolute stereochemistry, and pharmacology of the enantiomers of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO) and analogues. , 1999, Journal of medicinal chemistry.

[74]  I. Módy,et al.  Synapse-specific contribution of the variation of transmitter concentration to the decay of inhibitory postsynaptic currents. , 2001, Biophysical journal.

[75]  C. Ribak,et al.  Astrocytic processes compensate for the apparent lack of GABA transporters in the axon terminals of cerebellar Purkinje cells , 1996, Anatomy and Embryology.

[76]  Joshua W. Miller,et al.  Cloned Sodium- (and Chloride-) Dependent High-Affinity Transporters for GABA, Glycine, Proline, Betaine, Taurine, and Creatine , 1997 .

[77]  R. Nicoll,et al.  Postsynaptic action of endogenous GABA released by nipecotic acid in the hippocampus , 1992, Neuroscience Letters.

[78]  C. Kaiser,et al.  Orally Active and Potent Inhibitors of γ-Aminobutyric Acid Uptake , 1985 .

[79]  Marek A. Mirski,et al.  Anterior thalamic mediation of generalized pentylenetetrazol seizures , 1986, Brain Research.

[80]  Keiko Sato,et al.  Comparative Study of the Anticonvulsant Effect of γ‐Aminobutyric Acid Agonists in the Feline Kindling Model of Epilepsy , 1993, Epilepsia.

[81]  A. Bendahan,et al.  Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. , 1986, The Journal of biological chemistry.

[82]  M. Kilimann,et al.  A creatine transporter cDNA from Torpedo illustrates structure/function relationships in the GABA/noradrenaline transporter family. , 1994, Journal of Molecular Biology.

[83]  L. Fowler,et al.  Tetanus Toxin‐Induced Effects on Extracellular Amino Acid Levels in Rat Hippocampus: An In Vivo Microdialysis Study , 1996, Journal of neurochemistry.

[84]  A. Schousboe,et al.  Mutual Inhibition Kinetic Analysis of γ‐Aminobutyric Acid, Taurine, and β‐Alanine High‐Affinity Transport into Neurons and Astrocytes: Evidence for Similarity Between the Taurine and β‐Alanine Carriers in Both Cell Types , 1986 .

[85]  T. Branchek,et al.  Molecular heterogeneity of the gamma-aminobutyric acid (GABA) transport system. Cloning of two novel high affinity GABA transporters from rat brain. , 1992, The Journal of biological chemistry.

[86]  M. Raiteri,et al.  Detectability of high and low affinity uptake systems for GABA and glutamate in rat brain slices and synaptosomes. , 1973, Life sciences. Pt. 1: Physiology and pharmacology.

[87]  M. Won,et al.  The changes in the expressions of γ-aminobutyric acid transporters in the gerbil hippocampal complex following spontaneous seizure , 2001, Neuroscience Letters.

[88]  A. Draguhn,et al.  Unaltered control of extracellular GABA-concentration through GAT-1 in the hippocampus of rats after pilocarpine-induced status epilepticus , 2003, Epilepsy Research.

[89]  M. Quick,et al.  Functional Regulation of γ-Aminobutyric Acid Transporters by Direct Tyrosine Phosphorylation* , 2000, The Journal of Biological Chemistry.

[90]  Dennis D. Spencer,et al.  Hippocampal GABA transporter function in temporal-lobe epilepsy , 1995, Nature.

[91]  J. Wood,et al.  Three uptake systems in synaptosomes for nipecotic acid and beta-alanine , 1986, Neuropharmacology.

[92]  Jianning Wei,et al.  Demonstration of functional coupling between γ-aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[93]  P. Krogsgaard‐Larsen,et al.  INHIBITION OF GABA UPTAKE IN RAT BRAIN SLICES BY NIPECOTIC ACID, VARIOUS ISOXAZOLES AND RELATED COMPOUNDS , 1975, Journal of neurochemistry.

[94]  B. Meldrum,et al.  Anticonvulsant activity of GABA uptake inhibitors and their prodrugs following central or systemic administration. , 1983, European journal of pharmacology.

[95]  C. Tanaka,et al.  Production of specific antibodies against GABA transporter subtypes (GAT1, GAT2, GAT3) and their application to immunocytochemistry. , 1994, Brain research. Molecular brain research.

[96]  R. Racine,et al.  Modification of seizure activity by electrical stimulation. II. Motor seizure. , 1972, Electroencephalography and clinical neurophysiology.

[97]  N. Nelson,et al.  Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. , 1993, The Journal of biological chemistry.

[98]  X. Yan,et al.  Developmental expression of gamma-aminobutyric acid transporters (GAT-1 and GAT-3) in the rat cerebellum: evidence for a transient presence of GAT-1 in Purkinje cells. , 1998, Brain research. Developmental brain research.

[99]  P. Whiting,et al.  Pharmacological characterization of a novel cell line expressing human α4β3δ GABAA receptors , 2002 .

[100]  Dan Wang,et al.  Plasma Membrane GABA Transporters Reside on Distinct Vesicles and Undergo Rapid Regulated Recycling , 2003, The Journal of Neuroscience.

[101]  L. Iversen,et al.  Uptake and metabolism of γ-aminobutyric acid by neurones and glial cells , 1975 .

[102]  N. O. Dalby,et al.  Comparison of the preclinical anticonvulsant profiles of tiagabine, lamotrigine, gabapentin and vigabatrin , 1997, Epilepsy Research.

[103]  C. Newland,et al.  On the mechanism of action of picrotoxin on GABA receptor channels in dissociated sympathetic neurones of the rat. , 1992, The Journal of physiology.

[104]  M. Scanziani GABA Spillover Activates Postsynaptic GABAB Receptors to Control Rhythmic Hippocampal Activity , 2000, Neuron.

[105]  Alterations of hippocampal GABAergic system contribute to development of spontaneous recurrent seizures in the rat lithium‐pilocarpine model of temporal lobe epilepsy , 2001, Hippocampus.

[106]  Signe í Stórustovu,et al.  Gaboxadol: in vitro interaction studies with benzodiazepines and ethanol suggest functional selectivity. , 2003, European journal of pharmacology.

[107]  N. Brecha,et al.  GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[108]  R. Fisher GABA Mechanisms in Epilepsy , 1993 .

[109]  P. Somogyi,et al.  Compartmentalised distribution of GABAA and glutamate receptors in relation to transmitter release sites on the surface of cerebellar neurones. , 1997, Progress in brain research.

[110]  N. Nelson,et al.  Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[111]  J. Storm-Mathisen,et al.  Immunocytochemical localization of the GABA transporter in rat brain , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[113]  John M. Zempel,et al.  How quickly can GABAA receptors open? , 1994, Neuron.

[114]  G. V. Goddard,et al.  A permanent change in brain function resulting from daily electrical stimulation. , 1969, Experimental neurology.

[115]  R. Macdonald,et al.  Properties of putative cerebellar gamma-aminobutyric acid A receptor isoforms. , 1996, Molecular pharmacology.

[116]  H. White,et al.  Anticonvulsant Profiles of the Potent and Orally Active GABA Uptake Inhibitors SK&F 89976‐A and SK&F 100330‐A and Four Prototype Antiepileptic Drugs in Mice and Rats , 1991, Epilepsia.

[117]  M. Lancel,et al.  Effect of the GABA uptake inhibitor tiagabine on sleep and EEG power spectra in the rat , 1998, British journal of pharmacology.

[118]  N. Brecha,et al.  GAT-3, a High-Affinity GABA Plasma Membrane Transporter, Is Localized to Astrocytic Processes, and It Is Not Confined to the Vicinity of GABAergic Synapses in the Cerebral Cortex , 1996, The Journal of Neuroscience.

[119]  S. Schachter Pharmacology and clinical experience with tiagabine , 2001, Expert opinion on pharmacotherapy.

[120]  J. Wood,et al.  A Comparative Study and Partial Characterization of Multi‐Uptake Systems for γ‐Aminobutyric Acid , 1987, Journal of neurochemistry.

[121]  J. Bucuvalas,et al.  A liver-specific isoform of the betaine/GABA transporter in the rat: cDNA sequence and organ distribution. , 1996, Biochimica et biophysica acta.

[122]  C. Thomsen,et al.  1‐(3‐(9H‐Carbazol‐9‐yl)‐1‐propyl)‐4‐(2‐methoxyphenyl)‐4‐piperidinol, a novel subtype selective inhibitor of the mouse type II GABA‐transporter , 1997, British journal of pharmacology.

[123]  T. Branchek,et al.  Cloning and Expression of a Betaine/GABA Transporter from Human Brain , 1995, Journal of neurochemistry.

[124]  A. Roepstorff,et al.  Comparison of the effect of the GABA uptake blockers, tiagabine and nipecotic acid, on inhibitory synaptic efficacy in hippocampal CA1 neurones , 1992, Neuroscience Letters.

[125]  Lipophilic GABA uptake inhibitors: Biochemistry, pharmacology and therapeutic potential , 1993 .

[126]  G. Morris,et al.  Tiagabine Overdose Can Induce Convulsive Status Epilepticus , 2002, Epilepsia.

[127]  R. North,et al.  Electrogenic uptake of gamma-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. , 1992, The Journal of biological chemistry.

[128]  T. Branchek,et al.  Design, synthesis and evaluation of substituted triarylnipecotic acid derivatives as GABA uptake inhibitors: identification of a ligand with moderate affinity and selectivity for the cloned human GABA transporter GAT-3. , 1994, Journal of medicinal chemistry.

[129]  T. Branchek,et al.  Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. , 1995, Brain research. Molecular brain research.

[130]  A. Bordey,et al.  GAT-1 and reversible GABA transport in Bergmann glia in slices. , 2002, Journal of neurophysiology.

[131]  S. Amara,et al.  Stable expression of a neuronal gamma-aminobutyric acid transporter, GAT-3, in mammalian cells demonstrates unique pharmacological properties and ion dependence. , 1994, Molecular pharmacology.

[132]  D. Spencer,et al.  GABA uptake and heterotransport are impaired in the dentate gyrus of epileptic rats and humans with temporal lobe sclerosis. , 2001, Journal of neurophysiology.

[133]  J. Clements Transmitter timecourse in the synaptic cleft: its role in central synaptic function , 1996, Trends in Neurosciences.

[134]  A. Najlerahim,et al.  Distribution of mRNA for the GABA transporter GAT-1 in the rat brain: evidence that GABA uptake is not limited to presynaptic neurons. , 1994, Journal of anatomy.

[135]  B. Westerink,et al.  Characterization of extracellular GABA in the substantia nigra reticulata by means of brain microdialysis , 1992, Naunyn-Schmiedeberg's Archives of Pharmacology.

[136]  A. Schousboe,et al.  Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. , 1999, European journal of pharmacology.