The maximum principle for systems of parabolic equations subject to an avoidance set

Hamilton's maximum principle for systems states that given a reaction-diffusion equation (semi-linear heat-type equation) for sections of a vector bundle over a manifold, if the solution is initially in a subset invariant under parallel translation and convex in the fibers and if the ODE associated to the PDE preserves the subset, then the solution remains in the subset for positive time. We generalize this result to the case where the subsets are time-dependent and where there is an avoidance set from which the solution is disjoint. In applications the existence of an avoidance set can sometimes be used to prove the preservation of a subset of the vector bundle by the PDE.

[1]  R. Hamilton Non-singular solutions of the Ricci flow on three-manifolds , 1999 .

[2]  F. M. Cholewinski Generalized Fock Spaces and Associated Operators , 1984 .

[3]  P. Orlik,et al.  Combinatorics and topology of complements of hyperplanes , 1980 .

[4]  A. W. Knapp,et al.  Cohomological Induction and Unitary Representations , 1995 .

[5]  H. Nakajima Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , 1994 .

[6]  On the cohomology rings of Hamiltonian T-spaces , 1998, math/9812006.

[7]  Charles F. Dunkl,et al.  Differential-difference operators associated to reflection groups , 1989 .

[8]  E. Opdam Harmonic analysis for certain representations of graded Hecke algebras , 1995 .

[9]  Nearly holomorphic functions and relative discrete series of weighted $L^2$-spaces on bounded symmetric domains , 1999, math/9911131.

[10]  Nobuaki Obata,et al.  White Noise Calculus and Fock Space , 1994 .

[11]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[12]  Victor Ginzburg,et al.  Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , 2000 .

[13]  Donald A. Martin,et al.  The Strength of Blackwell determinacy , 2003, Journal of Symbolic Logic.

[14]  W. Ledermann INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY , 1974 .

[15]  Benedikt Löwe Playing with mixed strategies on infinite sets , 2002, Int. J. Game Theory.

[16]  W. Rudin Function Theory in the Unit Ball of Cn , 1980 .

[17]  V. Fock Verallgemeinerung und Lösung der Diracschen statistischen Gleichung , 1928 .

[18]  W. Riihl Field Representations of the Conformal Group with Continuous Mass Spectrum , 2022 .

[19]  Apostolos Beligiannis The homological theory of contravariantly finite subcategories:auslander-buchweitz contexts, gorenstein categories and (co-)stabilization , 2000 .

[20]  R. Hamilton Four-manifolds with positive curvature operator , 1986 .

[21]  R. Hamilton,et al.  The formations of singularities in the Ricci Flow , 1993 .

[22]  Margit Rosler Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators , 1997 .

[23]  A. King,et al.  Minimal Resolutions of Algebras , 1999 .

[24]  Jean-Pierre Serre Faisceaux algébriques cohérents , 1955 .

[25]  A. Dancer,et al.  The geometry and topology of toric hyperkahler manifolds , 2000 .

[26]  D. Vogan Representations of real reductive Lie groups , 1981 .

[27]  F. Kirwan Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 , 1984 .

[28]  Wolfgang Soergel,et al.  Koszul Duality Patterns in Representation Theory , 1996 .

[29]  A. Kanamori The higher infinite : large cardinals in set theory from their beginnings , 2005 .

[30]  Reyer Sjamaar Holomorphic slices, symplectic reduction and multiplicities of representations , 1993 .

[31]  Donald A. Martin,et al.  The determinacy of Blackwell games , 1998, Journal of Symbolic Logic.

[32]  Luc Lapointe,et al.  Exact operator solution of the Calogero-Sutherland model , 1995, q-alg/9509003.

[33]  A. Roy A note on filtered rings , 1965 .

[34]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[35]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[36]  G. Shimura Invariant differential operators on hermitian symmetric spaces , 1990 .

[37]  R. Hamilton The Harnack estimate for the Ricci flow , 1993 .

[38]  R. Parthasarathy Dirac operator and discrete series , 1972 .

[39]  Eugene M. Kleinberg,et al.  Infinitary combinatorics and the axiom of determinateness , 1977 .

[40]  P. Forrester,et al.  The Calogero-Sutherland Model and Generalized Classical Polynomials , 1996, solv-int/9608004.

[41]  H. Konno COHOMOLOGY RINGS OF TORIC HYPERKÄHLER MANIFOLDS , 2000 .

[42]  Generalized Fock spaces and Weyl relations for the Dunkl kernel on the real line , 2002 .

[43]  Y. Yoshino,et al.  Modules with linear resolution over a polynomial ring in two variables , 1989, Nagoya Mathematical Journal.

[44]  William Arveson,et al.  Subalgebras ofC*-algebras III: Multivariable operator theory , 1997 .

[45]  C. Berger,et al.  Toeplitz operators on the Segal-Bargmann space , 1987 .

[46]  Apostolos Beligiannis,et al.  Left triangulated categories arising from contravariantly finite subcategories , 1994 .

[47]  Michael Voit,et al.  Markov Processes Related with Dunkl Operators , 1998 .

[48]  Jun-ichi Miyachi,et al.  Localization of triangulated categories and derived categories , 1991 .

[49]  Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations , 1993, math/9301214.

[50]  S. J. Taylor BROWNIAN MOTION (Applications of Mathematics, 11) , 1982 .

[51]  Ronald G. Douglas,et al.  Hilbert Modules over Function Algebras , 1989 .

[52]  David D. Blackwell Infinite Gδ-Games with imperfect information , 1969 .

[53]  A. A. Lacey,et al.  Multidimensional Reaction Diffusion Equations with Nonlinear Boundary Conditions , 1998, SIAM J. Appl. Math..

[54]  Jing Huang,et al.  Dirac cohomology, unitary representations and a proof of a conjecture of Vogan , 2001 .

[55]  V. Bargmann On a Hilbert space of analytic functions and an associated integral transform part I , 1961 .

[56]  L. Hua Harmonic analysis of functions of several complex variables in the classical domains , 1963 .

[57]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[58]  A. Kechris Measure and category in effective descriptive set theory , 1973 .

[59]  Jingbo Xia,et al.  Toeplitz algebras and Rieffel deformations , 1995 .

[60]  R. J. Plymen,et al.  REPRESENTATION THEORY OF SEMISIMPLE GROUPS: An Overview Based on Examples , 1989 .

[61]  N. Wallach Real reductive groups , 1988 .