Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
暂无分享,去创建一个
M. Gauthier | S. H. Glenzer | H. J. Lee | T. Döppner | S. Göde | P. Neumayer | B. Nagler | L. B. Fletcher | S. Glenzer | A. Ravasio | B. Nagler | T. Döppner | G. Schaumann | R. Falcone | G. Gregori | P. Neumayer | D. Gericke | J. Vorberger | B. Barbrel | L. Fletcher | B. Bachmann | E. Gamboa | D. Kraus | S. Frydrych | E. Granados | M. Roth | M. Gauthier | W. Schumaker | S. Göde | E. Granados | W. Schumaker | A. Ravasio | Eduardo Granados | B. Bachmann | G. Gregori | E. J. Gamboa | R. W. Falcone | B. Barbrel | J. Vorberger | D. Kraus | D. O. Gericke | S. Frydrych | J. Helfrich | G. Schaumann | M. Roth | J. Helfrich | H. Lee
[1] H. J. Lee,et al. New experimental platform to study high density laser-compressed matter. , 2014, The Review of scientific instruments.
[2] Roberto Car,et al. Carbon phase diagram from ab initio molecular dynamics. , 2005, Physical review letters.
[3] CLIFFORD FRONDEL,et al. Lonsdaleite, a Hexagonal Polymorph of Diamond , 1967, Nature.
[4] W. Gust. Phase transition and shock-compression parameters to 120 GPa for three types of graphite and for amorphous carbon , 1980 .
[5] John R. Johnson,et al. Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments , 2009, Proceedings of the National Academy of Sciences.
[6] K. Kondo,et al. Predominant parameters in the shock‐induced transition from graphite to diamond , 1995 .
[7] P. Buseck,et al. Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material , 2014, Nature Communications.
[8] D. B. Carlisle,et al. Nanometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta , 1991, Nature.
[9] P. Decarli,et al. Formation of Diamond by Explosive Shock , 1961, Science.
[10] N. Pineau. Molecular Dynamics Simulations of Shock Compressed Graphite , 2013 .
[11] R. Wirth,et al. New evidence of meteoritic origin of the Tunguska cosmic body , 2013 .
[12] W. Nellis,et al. Shock-induced martensitic phase transformation of oriented graphite to diamond , 1991, Nature.
[13] Ji‐an Xu,et al. Total energy calculations of the lattice properties of cubic and hexagonal diamond , 1998 .
[14] M. Ross. The ice layer in Uranus and Neptune—diamonds in the sky? , 1981, Nature.
[15] E. Tosatti,et al. Pressure-Induced Transformation Path of Graphite to Diamond. , 1995, Physical review letters.
[16] W. Nellis,et al. Shock-induced martensitic transformation of highly oriented graphite to diamond , 1992 .
[17] F. Bundy,et al. Hexagonal Diamonds in Meteorites: Implications , 1967, Science.
[18] A. Kurdyumov,et al. The influence of the shock compression conditions on the graphite transformations into lonsdaleite and diamond , 2012, Journal of Superhard Materials.
[19] R. Hough,et al. Diamond and silicon carbide in impact melt rock from the Ries impact crater , 1995, Nature.
[20] E. Reed,et al. Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression. , 2008, The Journal of chemical physics.
[21] Michele Parrinello,et al. Nucleation mechanism for the direct graphite-to-diamond phase transition. , 2011, Nature materials.
[22] Shock-compressed graphite to diamond transformation on nanosecond time scales , 2013 .
[23] W. Nellis,et al. Carbon at pressures in the range 0.1–1 TPa (10 Mbar) , 2001 .
[24] T. Kondo,et al. Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size , 2004 .
[25] F. P. Bundy,et al. Hexagonal Diamond—A New Form of Carbon , 1967 .
[26] C. Salzmann,et al. Extent of stacking disorder in diamond , 2015, 1505.02561.
[27] Yi Zhang,et al. Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. , 2009, Physical review letters.
[28] F. Bundy,et al. Preparation of Diamond , 1959, Nature.
[29] S. Glenzer,et al. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scatteringa) , 2015 .
[30] I. Rattee. Physical Chemistry of Pigments , 1968, Nature.
[31] S. Louie,et al. Structural and electronic properties of carbon in hybrid diamond-graphite structures , 2005 .
[32] M. Roth,et al. Probing the complex ion structure in liquid carbon at 100 GPa. , 2013, Physical review letters.
[33] B. Militzer,et al. A multiphase equation of state for carbon addressing high pressures and temperatures , 2013, 1311.4577.
[34] Zhao,et al. X-ray diffraction data for graphite to 20 GPa. , 1989, Physical review. B, Condensed matter.
[35] K. Shimizu,et al. Compression of polyhedral graphite up to 43 GPa and x-ray diffraction study on elasticity and stability of the graphite phase , 2004 .
[36] Tao Yu,et al. Mechanism for direct graphite-to-diamond phase transition , 2014, Scientific Reports.