Ion crystals in anharmonic traps

There is currently intensive research into creating a large-scale quantum computer with trapped ions. It is well known that for a linear ion crystal in a harmonic potential, the ions near the center are more closely spaced compared to the ions near the ends. This is problematic as the number of ions increases. Here, we consider a linear ion crystal in an anharmonic potential that is purely quartic in position. We find that the ions are more evenly spaced compared to the harmonic case. We develop a variational approach to calculate the properties of the ground state. We also characterize the zigzag transition in an anharmonic potential.

[1]  T. Monz,et al.  Realization of a scalable Shor algorithm , 2015, Science.

[2]  Andrew Farr,et al.  Experimental demonstration of a surface-electrode multipole ion trap , 2015, 1507.04998.

[3]  R. Blatt,et al.  Enhanced quantum interface with collective ion-cavity coupling. , 2014, Physical review letters.

[4]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[5]  D. Dubin Structure of two-dimensional plasma crystals in anharmonic Penning traps , 2013 .

[6]  G. Morigi,et al.  Stability and dynamics of ion rings in linear multipole traps , 2012, 1211.2931.

[7]  Curtis Volin,et al.  Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation , 2012, 1204.4147.

[8]  J. P. Home,et al.  Normal modes of trapped ions in the presence of anharmonic trap potentials , 2011, 1105.4752.

[9]  Tony E. Lee,et al.  Pattern formation with trapped ions. , 2010, Physical review letters.

[10]  R. Ozeri,et al.  Single-ion nonlinear mechanical oscillator , 2010, 1003.1577.

[11]  H. Haffner,et al.  Wiring up trapped ions to study aspects of quantum information , 2009, 0903.3834.

[12]  C. Monroe,et al.  Large-scale quantum computation in an anharmonic linear ion trap , 2009, 0901.0579.

[13]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[14]  C. Monroe,et al.  Trapped ion quantum computation with transverse phonon modes. , 2006, Physical review letters.

[15]  S. Fishman,et al.  Dynamics of an ion chain in a harmonic potential. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical review letters.

[17]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[18]  Gerard J. Milburn,et al.  Ion Trap Quantum Computing with Warm Ions , 2000 .

[19]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[20]  D. Dubin MINIMUM ENERGY STATE OF THE ONE-DIMENSIONAL COULOMB CHAIN , 1997 .

[21]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[22]  A. Steane The ion trap quantum information processor , 1996, quant-ph/9608011.

[23]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[24]  Dubin,et al.  Theory of structural phase transitions in a trapped Coulomb crystal. , 1993, Physical review letters.

[25]  Schiffer Phase transitions in anisotropically confined ionic crystals. , 1993, Physical review letters.

[26]  H. Totsuji,et al.  Structure of a nonneutral classical plasma in a magnetic field. , 1988, Physical review letters.

[27]  L. Sehgal,et al.  Γ and B , 2004 .