Planning temporal events using point-interval logic

The paper presents a temporal logic and its application to planning time-critical missions. An extended version of the Point-Interval Logic (PIL) is presented that incorporates both point and interval descriptions of time. The points and intervals in this formalism represent time stamps and time delays, respectively, associated with events/activities in a mission as constraints on or as resultants of a planning process. The lexicon of the logic offers the flexibility of qualitative and/or quantitative descriptions of temporal relationships between points and intervals of a system. The provision for qualitative temporal relationships makes the approach suitable for situations where all the required quantitative information may not be available to planners. A graph-based approach, called the Point Graph (PG) methodology, is shown to implement the axiomatic system of PIL by transforming the temporal specifications into Point Graphs. A temporal inference engine uses the Point Graph representation to infer and verify the feasibility of temporal relations among system intervals/points. The paper demonstrates the application of PIL and its inference engine to a mission-planning problem.

[1]  Ron Shamir,et al.  Algorithms and Complexity for Reasoning about Time , 1992, AAAI.

[2]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[3]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[4]  Dov M. Gabbay,et al.  Temporal logic (vol. 1): mathematical foundations and computational aspects , 1994 .

[5]  Alexander Bochman,et al.  Concerted Instant-Interval Temporal Semantics II: Temporal Valuations and Logics of Change , 1990, Notre Dame J. Formal Log..

[6]  John Niemeyer Findlay,et al.  Time: A treatment of some puzzles , 1941 .

[7]  Vyvyan Evans,et al.  The Structure of Time , 2003 .

[8]  Angelo Montanari,et al.  A Hierarchy of Modal Event Calculi: Expressiveness and Complexity , 2000 .

[9]  Lee Naish The Complexity of Model Checking in Modal Event Calculi , 1997 .

[10]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[11]  Joseph J. Moder,et al.  Project Management with CPM and PERT , 1964 .

[12]  J. T. Fraser,et al.  The Study of Time , 1972 .

[13]  Enrico Franconi,et al.  A survey of temporal extensions of description logics , 2001, Annals of Mathematics and Artificial Intelligence.

[14]  Rasiah Loganantharaj,et al.  Qualitative and quantitative time interval constraint networks , 1991, CSC '91.

[15]  Brian Knight,et al.  Reified Temporal Logics: An Overview , 2001, Artificial Intelligence Review.

[16]  Itay Meiri,et al.  Combining Qualitative and Quantitative Constraints in Temporal Reasoning , 1991, Artif. Intell..

[17]  James F. Allen Temporal reasoning and planning , 1991 .

[18]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[19]  Peter Jackson,et al.  Logic-based knowledge representation , 1989 .

[20]  Antony Galton,et al.  Temporal logics and their applications , 1987 .

[21]  Juan Carlos Augusto,et al.  The Logical Approach to Temporal Reasoning , 2001, Artificial Intelligence Review.

[22]  Antony Galton Logic - for information technology , 1990 .

[23]  Dov M. Gabbay,et al.  Advances in Temporal Logic , 2000 .

[24]  James F. Allen,et al.  Actions and Events in Interval Temporal Logic , 1994, J. Log. Comput..

[25]  Angelo Montanari,et al.  The Complexity of Model Checking in Modal Event Calculi with Quantifiers , 1998, Electron. Trans. Artif. Intell..

[26]  Hamdy A. Taha,et al.  Operations research: an introduction / Hamdy A. Taha , 1982 .

[27]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[28]  James F. Allen An Interval-Based Representation of Temporal Knowledge , 1981, IJCAI.

[29]  James L. Peterson,et al.  Petri Nets , 1977, CSUR.

[30]  Y. Yao,et al.  A Petri Net Model for Temporal Knowledge Representation and Reasoning , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[31]  Han Reichgelt,et al.  A comparison of first order and modal logics of time. , 1989 .

[32]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[33]  Lenhart K. Schubert,et al.  Efficient Algorithms for Qualitative Reasoning about Time , 1995, Artif. Intell..

[34]  L. Fariñas-del-Cerro,et al.  Resolution modal logics , 1989 .

[35]  Jacques Vautherin,et al.  Analysing Nets by the Invariant Method , 1986, Advances in Petri Nets.

[36]  Robert S. Boyer,et al.  The Correctness Problem in Computer Science , 1982 .

[37]  Yoav Shoham,et al.  Temporal Logics in AI: Semantical and Ontological Considerations , 1987, Artif. Intell..

[38]  Willard Van Orman Quine Elementary Logic: Revised Edition , 1980 .

[39]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[40]  Alasdair Urquhart,et al.  Temporal Logic , 1971 .

[41]  Zohar Manna,et al.  Verification of concurrent programs, Part I: The temporal framework , 1981 .

[42]  Kenneth M. Kahn,et al.  Mechanizing Temporal Knowledge , 1977, Artif. Intell..

[43]  Tariq Haroon Ahmad,et al.  Project management with CPM , 1976 .

[44]  James F. Allen Planning as Temporal Reasoning , 1991, KR.

[45]  Antony Galton,et al.  A Critical Examination of Allen's Theory of Action and Time , 1990, Artif. Intell..

[46]  Martha E. Pollack,et al.  There's More to Life than Making Plans: Plan Management in Dynamic, Multiagent Environments , 1999, AI Mag..

[47]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[48]  Alexander Bochman,et al.  Concerted Instant-Interval Temporal Semantics I: Temporal Ontologies , 1990, Notre Dame J. Formal Log..

[49]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[50]  Brian F. Chellas Modal Logic: Normal systems of modal logic , 1980 .

[51]  D. Gabby,et al.  Elementary Logic , 1993, Nature.

[52]  Abbas K. Zaidi,et al.  On temporal logic programming using Petri nets , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[53]  Drew McDermott,et al.  A Temporal Logic for Reasoning About Processes and Plans , 1982, Cogn. Sci..

[54]  Alexander H. Levis,et al.  TEMPER: a temporal programmer for time-sensitive control of discrete event systems , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[55]  Witold Lukaszewicz,et al.  Reasoning about Plans , 1997, IJCAI.

[56]  T. L. Saaty,et al.  Finite graphs and networks : an introduction with applications , 1967 .

[57]  Peter Øhrstrøm,et al.  Temporal Logic , 1994, Lecture Notes in Computer Science.

[58]  Peter Radford,et al.  Petri Net Theory and the Modeling of Systems , 1982 .

[59]  Martha E. Pollack,et al.  Conditional, Probabilistic Planning: A Unifying Algorithm and Effective Search Control Mechanisms , 1999, AAAI/IAAI.

[60]  Dov M. Gabbay,et al.  Proceedings of the First International Conference on Temporal Logic , 1994 .

[61]  I. Rauf,et al.  On revising temporal models of discrete event systems , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[62]  Patrick J. Hayes,et al.  A Common-Sense Theory of Time , 1985, IJCAI.

[63]  James A. Hendler,et al.  Readings in Planning , 1994 .

[64]  Martha E. Pollack,et al.  Merging Plans with Quantitative Temporal Constraints, Temporally Extended Actions, and Conditional Branches , 2000, AIPS.

[65]  Henry A. Kautz,et al.  Reasoning about plans , 1991, Morgan Kaufmann series in representation and reasoning.

[66]  Hans W. Guesgen,et al.  Fuzzifying spatial relations , 2002 .

[67]  C. L. Hamblin Instants and intervals. , 1971, Studium generale; Zeitschrift fur die Einheit der Wissenschaften im Zusammenhang ihrer Begriffsbildungen und Forschungsmethoden.

[68]  Peter Jonsson,et al.  Eight Maximal Tractable Subclasses of Allen's Algebra with Metric Time , 1997, J. Artif. Intell. Res..

[69]  Llu S Vila,et al.  Ip: an Instant-period{based Theory of Time , 1994 .

[70]  Peter Jeavons,et al.  Reasoning about temporal relations: The tractable subalgebras of Allen's interval algebra , 2003, JACM.

[71]  O. Stock Spatial and Temporal Reasoning , 1899 .

[72]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[73]  Johan van Benthem,et al.  Space, time, and computation: Trends and problems , 2004, Applied Intelligence.

[74]  James F. Allen,et al.  Planning Using a Temporal World Model , 1983, IJCAI.

[75]  Martín Abadi,et al.  Nonclausal Temporal Deduction , 1985, Logic of Programs.

[76]  Manuel Silva,et al.  A Simple and Fast Algorithm to Obtain All Invariants of a Generalized Petri Net , 1980, Selected Papers from the First and the Second European Workshop on Application and Theory of Petri Nets.