SPH Fluids for Viscous Jet Buckling

We present a novel meshfree technique for animating free surface viscous liquids with jet buckling effects, such as coiling and folding. Our technique is based on Smoothed Particle Hydrodynamics (SPH) fluids and allows more realistic and complex viscous behaviors than the preceding SPH frameworks in computer animation literature. The viscous liquid is modeled by a non-Newtonian fluid flow and the variable viscosity under shear stress is achieved using a viscosity model known as Cross model. The proposed technique is efficient and stable, and our framework can animate scenarios with high resolution of SPH particles in which the simulation speed is significantly accelerated by using Computer Unified Device Architecture (CUDA) computing platform. This work also includes several examples that demonstrate the ability of our technique.

[1]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[2]  Robert A. Dalrymple,et al.  SPH on GPU with CUDA , 2010 .

[3]  Jie Ouyang,et al.  SPH simulations of three-dimensional non-Newtonian free surface flows , 2013 .

[4]  Afonso Paiva,et al.  Particle-based viscoplastic fluid/solid simulation , 2009, Comput. Aided Des..

[5]  Philippe Beaudoin,et al.  Particle-based viscoelastic fluid simulation , 2005, SCA '05.

[6]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[7]  M. Manzari,et al.  An incompressible SPH method for simulation of unsteady viscoelastic free-surface flows , 2007 .

[8]  A. C. Filho,et al.  GENSMAC3D: a numerical method for solving unsteady three‐dimensional free surface flows , 2001 .

[9]  R. G. Owens,et al.  A numerical study of the SPH method for simulating transient viscoelastic free surface flows , 2006 .

[10]  Maurice Blount,et al.  The asymptotic structure of a slender dragged viscous thread , 2011, Journal of Fluid Mechanics.

[11]  M. F. Tomé,et al.  Numerical simulation of viscous flow: Buckling of planar jets , 1999 .

[12]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[13]  Afonso Paiva,et al.  Particle-based non-Newtonian fluid animation for melting objects , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.

[14]  José Alberto Cuminato,et al.  An implicit technique for solving 3D low Reynolds number moving free surface flows , 2008, J. Comput. Phys..

[15]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[16]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[17]  Robert Bridson,et al.  Accurate viscous free surfaces for buckling, coiling, and rotating liquids , 2008, SCA '08.

[18]  J. O. Cruickshank Low-Reynolds-number instabilities in stagnating jet flows , 1988, Journal of Fluid Mechanics.

[19]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[20]  J. Ouyang,et al.  A SPH-based particle method for simulating 3D transient free surface flows of branched polymer melts , 2013 .

[21]  E. Vouga,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[22]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[23]  Simon Green,et al.  Particle Simulation using CUDA , 2010 .

[24]  Christopher Batty,et al.  A simple finite volume method for adaptive viscous liquids , 2011, SCA '11.

[25]  V. G. Ferreira,et al.  A numerical method for solving three-dimensional generalized Newtonian free surface flows , 2004 .

[26]  Markus H. Gross,et al.  Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation , 2022 .

[27]  M. M. Cross Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems , 1965 .

[28]  Anne C. Elster,et al.  Fast GPU-Based Fluid Simulations Using SPH , 2010, PARA.

[29]  S. Koshizuka,et al.  International Journal for Numerical Methods in Fluids Numerical Analysis of Breaking Waves Using the Moving Particle Semi-implicit Method , 2022 .