On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation

We propose a novel a posteriori error estimator for conforming finite element discretizations of two-and three-dimensional Helmholtz problems. The estimator is based on an equilibrated flux that is computed through the solve of patchwise mixed finite element problems. We show that the estimator is reliable up to a prefactor that tends to one with mesh refinement or with polynomial degree increase. We also derive a fully computable upper bound on this prefactor for several common settings of domains and boundary conditions, leading to a guaranteed estimate in all wavenumber regimes without any assumption on the mesh size or the polynomial degree. We finally demonstrate that the estimator is locally efficient as soon as the mesh exhibits sufficiently many degrees of freedom per wavelength. In such a regime, the estimator is also robust with respect to the polynomial degree. We present numerical experiments that illustrate our analysis and indicate that our theoretical results are sharp.

[1]  Josep Sarrate,et al.  A POSTERIORI FINITE ELEMENT ERROR BOUNDS FOR NON-LINEAR OUTPUTS OF THE HELMHOLTZ EQUATION , 1999 .

[2]  Xuefeng Liu A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..

[3]  Carsten Carstensen,et al.  Asymptotic Exactness of the Least-Squares Finite Element Residual , 2018, SIAM J. Numer. Anal..

[4]  David Pardo,et al.  Goal-oriented adaptivity using unconventional error representations for the 1D Helmholtz equation , 2015, Comput. Math. Appl..

[5]  Jens Markus Melenk,et al.  Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..

[6]  Carsten Carstensen,et al.  Explicit Error Estimates for Courant, Crouzeix-Raviart and Raviart-Thomas Finite Element Methods , 2012 .

[7]  Simon N. Chandler-Wilde,et al.  High-frequency Bounds for the Helmholtz Equation Under Parabolic Trapping and Applications in Numerical Analysis , 2017, SIAM J. Math. Anal..

[8]  Ronald H. W. Hoppe,et al.  Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation , 2013 .

[9]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[10]  Martin Vohralík,et al.  Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions , 2020, Math. Comput..

[11]  Guy Chavent,et al.  Inverse Problems in Wave Propagation , 1997 .

[12]  Russell J. Hewett,et al.  Pollution-free and fast hybridizable discontinuous Galerkin solvers for the high-frequency Helmholtz equation , 2017 .

[13]  Hadrien Beriot,et al.  Efficient implementation of high‐order finite elements for Helmholtz problems , 2016 .

[14]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[15]  M. Costabel A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains , 1990 .

[16]  S. Marburg Developments in structural-acoustic optimization for passive noise control , 2002 .

[17]  S. Nicaise,et al.  High-frequency behaviour of corner singularities in Helmholtz problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[18]  W. Marsden I and J , 2012 .

[19]  Carsten Carstensen,et al.  Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..

[20]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[21]  G. Burton Sobolev Spaces , 2013 .

[22]  Ilaria Perugia,et al.  Robust Adaptive hp Discontinuous Galerkin Finite Element Methods for the Helmholtz Equation , 2018, SIAM J. Sci. Comput..

[23]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[24]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[25]  Ivo Babuška,et al.  A posteriori error estimation for finite element solutions of Helmholtz’ equation. part I: the quality of local indicators and estimators , 1997 .

[26]  Thomas J. R. Hughes,et al.  Explicit residual-based a posteriori error estimation for finite element discretizations of the Helmholtz equation: Computation of the constant and new measures of error estimator quality , 1996 .

[27]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[28]  David Pardo,et al.  Goal-Oriented Adaptivity using Unconventional Error Representations for 1 D Helmholtz Equation I , 2016 .

[29]  Martin Vohralík,et al.  Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations , 2017, SIAM J. Numer. Anal..

[30]  Fumio Kikuchi,et al.  Analysis and Estimation of Error Constants for P0 and P1 Interpolations over Triangular Finite Elements , 2010 .

[31]  Cecile Dobrzynski,et al.  MMG3D: User Guide , 2012 .

[32]  Andreas Veeser,et al.  Poincaré constants for finite element stars , 2012 .

[33]  Martin Vohralík,et al.  Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems , 2009 .

[34]  Euan A. Spence,et al.  Wavenumber-Explicit Bounds in Time-Harmonic Acoustic Scattering , 2014, SIAM J. Math. Anal..

[35]  Thomas J. R. Hughes,et al.  An a posteriori error estimator and hp -adaptive strategy for finite element discretizations of the Helmholtz equation in exterior domains , 1997 .

[36]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[37]  U. Hetmaniuk Stability estimates for a class of Helmholtz problems , 2007 .

[38]  R. Arcangéli,et al.  Sur l'évaluation de l'erreur d'interpolation de Lagrange dans un ouvert de $\mathbb{R}^n$ , 1976 .

[39]  Mark Ainsworth,et al.  Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..

[40]  Martin Vohralík,et al.  hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..

[41]  P. Bouillard,et al.  Efficiency of A Residual a posteriori Error Estimator for the Finite Element Solution of the Helmholtz Equation , 2001 .

[42]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[43]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[44]  Ivo Babuška,et al.  A posteriori error estimation for finite element solutions of Helmholtz' equation—Part II: estimation of the pollution error , 1997 .

[45]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[46]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[47]  Stefan A. Sauter,et al.  A Posteriori Error Estimation of hp-dG Finite Element Methods for Highly Indefinite Helmholtz Problems , 2014, SIAM J. Numer. Anal..

[48]  A Babuška-Aziz type proof of the circumradius condition , 2013, 1306.2097.

[49]  Anthony T. Patera,et al.  Asymptotic a Posteriori Finite Element Bounds for the Outputs of Noncoercive Problems: the Helmholtz , 1999 .

[50]  David B. Davidson,et al.  Computational Electromagnetics for RF and Microwave Engineering , 2005 .

[51]  Willy Dörfler,et al.  A Posteriori Error Estimation for Highly Indefinite Helmholtz Problems , 2013, Comput. Methods Appl. Math..

[52]  Jens Markus Melenk,et al.  hp-Interpolation of Nonsmooth Functions and an Application to hp-A posteriori Error Estimation , 2005, SIAM J. Numer. Anal..

[53]  S. Nicaise,et al.  Uniform a priori estimates for elliptic problems with impedance boundary conditions , 2020, Communications on Pure & Applied Analysis.

[54]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[55]  S. Nicaise,et al.  Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems , 2019, IMA Journal of Numerical Analysis.