Szeged Matrices and Related Numbers

A new unsymmetric matrix, SZu (unsymmetric Szeged matrix) is proposed by analogy to the matrix CJu (unsymmetric Cluj matrix) [1,2]. It is defined and exemplified both for acyclic and cycle-containing structures. Its relation with the CJu matrix is discussed. The derived Szeged numbers are compared to the Wiener matrixand Cluj matrixderived numbers and tested for separating and correlating ability on selected sets of graphs.

[1]  Andrey A. Dobrynin,et al.  The Szeged Index and an Analogy with the Wiener Index , 1995, J. Chem. Inf. Comput. Sci..

[2]  Xiaofeng Guo,et al.  Wiener matrix: Source of novel graph invariants , 1993, J. Chem. Inf. Comput. Sci..

[3]  Wolfgang Linert,et al.  A Novel Definition of the Hyper-Wiener Index for Cycles , 1994, J. Chem. Inf. Comput. Sci..

[4]  M. Randic Novel molecular descriptor for structure—property studies , 1993 .

[5]  O. A. Osipov,et al.  Dipole Moments and Some Special Problems of the Structure and Properties of Organic Compounds , 1970 .

[6]  Mircea V. Diudea Cluj Matrix Invariants , 1997, J. Chem. Inf. Comput. Sci..

[7]  Douglas J. Klein,et al.  Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances , 1994 .

[8]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[9]  Milan Randic,et al.  Wiener Matrix Invariants , 1994, Journal of chemical information and computer sciences.

[10]  N. Trinajstic,et al.  The Wiener Index: Development and Applications , 1995 .

[11]  Sandi Klavzar,et al.  An Algorithm for the Calculation of the Szeged Index of Benzenoid Hydrocarbons , 1995, J. Chem. Inf. Comput. Sci..

[12]  H. Hosoya Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1971 .

[13]  Andrey A. Dobrynin,et al.  A WIENER-TYPE GRAPH INVARIANT FOR SOME BIPARTITE GRAPHS , 1995 .

[14]  Ovidiu Ivanciuc,et al.  Chemical graphs with degenerate topological indices based on information on distances , 1993 .

[15]  I. Gutman,et al.  Some recent results in the theory of the Wiener number , 1993 .

[16]  Mircea V. Diudea,et al.  Walk Numbers eWM: Wiener-Type Numbers of Higher Rank , 1996, J. Chem. Inf. Comput. Sci..

[17]  Mircea V. Diudea Wiener and Hyper-Wiener Numbers in a Single Matrix , 1996, J. Chem. Inf. Comput. Sci..