Bathymetric-Based Band Selection Method for Hyperspectral Underwater Target Detection

Band selection has imposed great impacts on hyperspectral image processing in recent years. Unfortunately, few existing methods are proposed for hyperspectral underwater target detection (HUTD). In this paper, a novel unsupervised band selection method is proposed for HUTD by embedding the bathymetric model into the band selection process. Considering the dependence between targets and background, a bathymetric latent spectral representation learning scheme is designed to investigate a physically meaningful subspace where the desired targets are the most distinguishable from the background. This calculated subspace is exploited as a reference to select out desired bands based on the spectral distance metric. Then, we propose an iteration-based band subset generation strategy for the sake of promoting the diversity of the band selection results and taking full advantage of the ample spectral information. Moreover, a representative band selection approach based on sparse representation is also conducted to eliminate the redundant information among adjacent bands. The band selection result is eventually achievable by connecting the representative bands of all the band subsets. Qualitative and quantitative evaluations demonstrate the effectiveness and efficiency of the proposed method in comparison with state-of-the-art band selection methods.