Bismut Formula for Intrinsic/Lions Derivatives of Distribution Dependent SDEs with Singular Coefficients

By using distribution dependent Zvonkin’s transforms and Malliavin calculus, the Bismut type formula is derived for the intrinisc/Lions derivatives of distribution dependent SDEs with singular drifts, which generalizes the corresponding results derived for classical SDEs and regular distribution dependent SDEs. AMS subject Classification: 60H1075, 60G44.

[1]  Feng-Yu Wang,et al.  Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs , 2017, Discrete & Continuous Dynamical Systems - A.

[2]  Jean Vaillancourt,et al.  Stochastic McKean-Vlasov equations , 1995 .

[3]  J. Bismut Large Deviations and the Malliavin Calculus , 1984 .

[4]  Feng-Yu Wang,et al.  Distribution dependent stochastic differential equations , 2016, Frontiers of Mathematics in China.

[5]  The Bismut-Elworthy-Li formula for mean-field stochastic differential equations , 2015, 1510.06961.

[6]  Thomas G. Kurtz,et al.  Macroscopic limits for stochastic partial differential equations of McKean–Vlasov type , 2008 .

[7]  Feng-Yu Wang,et al.  Distribution dependent SDEs with singular coefficients , 2018, Stochastic Processes and their Applications.

[8]  A. Zvonkin A TRANSFORMATION OF THE PHASE SPACE OF A DIFFUSION PROCESS THAT REMOVES THE DRIFT , 1974 .

[9]  Longjie Xie,et al.  $L^q(L^p)$-theory of stochastic differential equations , 2019, 1908.01255.

[10]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[11]  Feng-Yu Wang,et al.  Bismut formula for Lions derivative of distribution dependent SDEs and applications , 2018, Journal of Differential Equations.

[12]  Feng-Yu Wang Distribution-Dependent SDEs for Landau Type Equations , 2016, 1606.05843.

[13]  K. Elworthy,et al.  Formulae for the Derivatives of Heat Semigroups , 1994, 1911.10971.

[14]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[15]  Michael Röckner,et al.  Probabilistic Representation for Solutions to Nonlinear Fokker-Planck Equations , 2018, SIAM J. Math. Anal..

[16]  M. Röckner,et al.  Differential geometry of Poisson spaces , 1996 .

[17]  Yulin Song Gradient Estimates and Exponential Ergodicity for Mean-Field SDEs with Jumps , 2018, Journal of Theoretical Probability.

[18]  A. Sznitman Topics in propagation of chaos , 1991 .

[19]  Gradient estimates and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift , 2014, 1404.2990.