Adiabatic technique for energy efficient logic circuits design

The Energy dissipation in conventional CMOS circuits can be minimized through adiabatic technique. By adiabatic technique dissipation in PMOS network can be minimized and some of energy stored at load capacitance can be recycled instead of dissipated as heat. But the adiabatic technique is highly dependent on parameter variation. With the help of TSPICE simulations, the energy consumption is analyzed by variation of parameter. In analysis, two logic families, ECRL (Efficient Charge Recovery Logic) and PFAL (Positive Feedback Adiabatic Logic) are compared with conventional CMOS logic for inverter and 2∶1 multiplexer circuits. It is find that adiabatic technique is good choice for low power application in specified frequency range.

[1]  Giuseppe Iannaccone,et al.  Variations of the Power Dissipation in Adiabatic Logic Gates , 2011 .

[2]  John S. Denker,et al.  2nd order adiabatic computation with 2N-2P and 2N-2N2P logic circuits , 1995, ISLPED '95.

[3]  Vojin G. Oklobdzija,et al.  Pass-transistor adiabatic logic using single power-clock supply , 1997 .

[4]  Nestoras Tzartzanis,et al.  Energy recovery for low-power CMOS , 1995, Proceedings Sixteenth Conference on Advanced Research in VLSI.

[5]  L. Reyneri,et al.  Positive feedback in adiabatic logic , 1996 .

[6]  A. Kramer,et al.  Adiabatic Computing with the 2n-2n2d Logic Family , 1994, Proceedings of 1994 IEEE Symposium on VLSI Circuits.

[7]  Anantha P. Chandrakasan,et al.  Low-power CMOS digital design , 1992 .

[8]  Deog-Kyoon Jeong,et al.  An efficient charge recovery logic circuit , 1996, IEEE J. Solid State Circuits.

[9]  Mark Horowitz,et al.  Evaluation of charge recovery circuits and adiabatic switching for low power CMOS design , 1994, Proceedings of 1994 IEEE Symposium on Low Power Electronics.

[10]  M. Schlecht,et al.  Power Dissipation Measurements on Recovered Energy Logic , 1994, Proceedings of 1994 IEEE Symposium on VLSI Circuits.

[11]  Manfred Glesner,et al.  A low power sinusoidal clock , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[12]  Doris Schmitt-Landsiedel,et al.  The impact of intra-die device parameter variations on path delays and on the design for yield of low voltage digital circuits , 1996, ISLPED '96.

[13]  Roberto Saletti,et al.  Simple model for positive-feedback adiabatic logic power consumption estimation , 2000 .

[14]  Nestoras Tzartzanis,et al.  Low-power digital systems based on adiabatic-switching principles , 1994, IEEE Trans. Very Large Scale Integr. Syst..

[15]  J. G. Koller,et al.  Adiabatic Switching, Low Energy Computing, And The Physics Of Storing And Erasing Information , 1992, Workshop on Physics and Computation.

[16]  John Stewart Denker,et al.  Adiabatic dynamic logic , 1995 .

[17]  Doris Schmitt-Landsiedel,et al.  Improving the positive feedback adiabatic logic familiy , 2005 .

[18]  William C. Athas,et al.  An energy-efficient CMOS line driver using adiabatic switching , 1994, Proceedings of 4th Great Lakes Symposium on VLSI.

[19]  Chun-Keung Lo,et al.  An adiabatic differential logic for low-power digital systems , 1999 .

[20]  J. S. Denker,et al.  A review of adiabatic computing , 1994, Proceedings of 1994 IEEE Symposium on Low Power Electronics.