Integrated solvent and process design using a SAFT-VR thermodynamic description: High-pressure separation of carbon dioxide and methane

The increasing importance of natural gas as an energy source poses separation challenges, due to the high pressures and high carbon dioxide concentrations of many natural gas streams. A methodology for computer-aided molecular and process design (CAMPD) applicable to such extreme conditions is presented, based on the integration of process and cost models with an advanced molecular-based equation of state, the statistical associating fluid theory for potentials of variable range (SAFT-VR). The approach is applied to carbon dioxide capture from methane using physical absorption. The search for an optimal solvent is focused on n-alkane blends. A simple flowsheet is optimised using two objectives: maximum purity and maximum net present value. The best equipment sizes, operating conditions, and average chain length of the solvent (the n-alkane) are identified, indicating n-alkane solvents offer a promising alternative. The proposed methodology can readily be extended to wider classes of solvents and to other challenging processes.

[1]  J. Prausnitz,et al.  Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems , 1975 .

[2]  G. Jackson,et al.  Predicting the High-Pressure Phase Equilibria of Methane + n-Hexane Using the SAFT-VR Approach , 1998 .

[3]  M. Huron,et al.  New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures☆ , 1979 .

[4]  J. D. Hemptinne,et al.  Application to binary mixtures of a group contribution SAFT EOS (GC-SAFT) , 2005 .

[5]  Amparo Galindo† and,et al.  Theoretical Examination of the Global Fluid Phase Behavior and Critical Phenomena in Carbon Dioxide + n-Alkane Binary Mixtures , 2002 .

[6]  M. Wertheim,et al.  Thermodynamic perturbation theory of polymerization , 1987 .

[7]  George Jackson,et al.  A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma). , 2007, The Journal of chemical physics.

[8]  Sten Bay Jørgensen,et al.  A novel framework for simultaneous separation process and product design , 2004 .

[9]  A. Galindo,et al.  Recent advances in the use of the SAFT approach in describing electrolytes, interfaces, liquid crystals and polymers , 2001 .

[10]  H. Saint-Guirons,et al.  Pressure (1- 1000 bars) and Temperature (20- 100 ° C) Dependence of the Viscosity of Liquid Hydrocarbons , 1986 .

[11]  Amparo Galindo Lowri A. Davies Alej The thermodynamics of mixtures and the corresponding mixing rules in the SAFT-VR approach for potentials of variable range , 1998 .

[12]  B. Lu,et al.  Vapor‐liquid equilibrium in the ethane‐carbon dioxide system , 1974 .

[13]  G. Jackson,et al.  Thermodynamics of Liquid Mixtures of Xenon with Alkanes: (Xenon + n-Butane) and (Xenon + Isobutane) , 2000 .

[14]  B. G. Harper,et al.  Vapor-Liquid Equilibrium , 1957 .

[15]  Rafiqul Gani,et al.  Design of environmentally benign processes: integration of solvent design and separation process synthesis , 1999 .

[16]  Klaus D. Timmerhaus,et al.  Plant design and economics for chemical engineers , 1958 .

[17]  K. Ohgaki,et al.  Isothermal vapor-liquid equilibrium data for the ethane—carbon dioxide system at high pressures , 1977 .

[18]  Sandro Macchietto,et al.  Computer aided molecular design: a novel method for optimal solvent selection , 1993 .

[19]  James M. Douglas,et al.  Conceptual Design of Chemical Processes , 1988 .

[20]  Y. Arai,et al.  High-Pressure Vapor−Liquid Equilibria for Carbon Dioxide + Limonene , 1994 .

[21]  Rafiqul Gani,et al.  MOLECULAR DESIGN OF SOLVENTS FOR LIQUID EXTRACTION BASED ON UNIFAC , 1983 .

[22]  Clare McCabe,et al.  Examining the Adsorption (Vapor-Liquid Equilibria) of Short-Chain Hydrocarbons in Low-Density Polyethylene with the SAFT-VR Approach , 2001 .

[23]  Junhang Dong,et al.  High pressure vapor liquid equilibria at 293 K for systems containing nitrogen, methane and carbon dioxide , 1992 .

[24]  Benjamin C.-Y. Lu,et al.  Simultaneous determination of vapor-liquid equilibrium and molar volumes for coexisting phases up to the critical temperature with a static method , 1993 .

[25]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[26]  Patrick Linke,et al.  Integrated solvent and process selection for separation and reactive separation systems , 2009 .

[27]  K. T. Koonce,et al.  Vapor-Liquid Equilibrium Coefficients Determined by Gas-Liquid Partition Chromatography: Systems Methane-Propane-n-Decane and Methane - Propane-n-Heptane. , 1964 .

[28]  Amparo Galindo,et al.  Study of the high pressure phase behaviour of CO2+n-alkane mixtures using the SAFT-VR approach with transferable parameters , 2002 .

[29]  Joosup. Shim,et al.  Multiphase and Volumetric Equilibria of Methane-n-Hexane Binary System at Temperatures Between -110° and 150° C. , 1962 .

[30]  Andrew J. Haslam,et al.  Developing optimal Wertheim-like models of water for use in Statistical Associating Fluid Theory (SAFT) and related approaches , 2006 .

[31]  M. Hirata,et al.  BINARY VAPOR-LIQUID EQUILIBRIA OF CARBON DIOXIDE-LIGHT HYDROCARBONS AT LOW TEMPERATURE , 1974 .

[32]  Clare McCabe,et al.  SAFT-VR modelling of the phase equilibrium of long-chain n-alkanes , 1999 .

[33]  Ho-mu Lin,et al.  Gas-liquid equilibrium in binary mixtures of methane with N-decane, benzene, and toluene , 1979 .

[34]  Efstratios N. Pistikopoulos,et al.  Optimal solvent design for environmental impact minimization , 1998 .

[35]  J. Prausnitz,et al.  LOCAL COMPOSITIONS IN THERMODYNAMIC EXCESS FUNCTIONS FOR LIQUID MIXTURES , 1968 .

[36]  Efstratios N. Pistikopoulos,et al.  Optimal design of solvent blends for environmental impact minimization , 1999 .

[37]  Martin J. Blunt,et al.  Carbon dioxide in enhanced oil recovery , 1993 .

[38]  R. J. Martin,et al.  Application of a generalized multiproperty apparatus to measure phase equilibrium and vapor phase densities of supercritical carbon dioxide in n-hexadecane systems up to 26 MPa , 1986 .

[39]  Amparo Galindo,et al.  Prediction of the Salting-Out Effect of Strong Electrolytes on Water + Alkane Solutions , 2003 .

[40]  M. Wertheim,et al.  Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations , 1984 .

[41]  Osborne R. Quayle,et al.  The Parachors of Organic Compounds. An Interpretation and Catalogue. , 1953 .

[42]  Ho-mu Lin,et al.  Vapor-liquid equilibrium in binary mixtures of carbon dioxide + n-decane and carbon dioxide + n-hexadecane , 1980 .

[43]  Z. Wagner,et al.  High-pressure vapour—liquid equilibrium in systems containing carbon dioxide, 1-hexene, and n-hexane , 1987 .

[44]  G. M. Wilson,et al.  Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing , 1964 .

[45]  Christopher M. A. Parlett,et al.  Reports of meetings , 1967 .

[46]  B. Sage,et al.  Phase Equilibria in Hydrocarbon Systems , 1936 .

[47]  Curtis H. Whitson,et al.  The negative flash , 1989 .

[48]  A. I. Lygeros,et al.  Column flooding and entrainment , 1986 .

[49]  Amr Henni,et al.  Solubility of N2O and CO2 in n-Dodecane , 1996 .

[50]  George Jackson,et al.  Statistical associating fluid theory for chain molecules with attractive potentials of variable range , 1997 .

[51]  Efstratios N. Pistikopoulos,et al.  Optimal design of dynamic systems under uncertainty , 1996 .

[52]  A. K. Coker PHYSICAL PROPERTIES OF LIQUIDS AND GASES , 2007 .

[53]  A. Kidnay,et al.  Liquid-vapor equilibriums at 270.00 K for systems containing nitrogen, methane, and carbon dioxide , 1978 .

[54]  J. D. Hemptinne,et al.  Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbon series , 2004 .

[55]  Wolfgang Marquardt,et al.  Dynamic multiple-phase flash simulation: Global stability analysis versus quick phase determination , 1997 .

[56]  David A. Fletcher,et al.  The United Kingdom Chemical Database Service , 1996, J. Chem. Inf. Comput. Sci..

[57]  H. Saint-Guirons,et al.  Pressure (1-1000 bars) and temperature (20-100.degree.C) dependence of the viscosity of liquid hydrocarbons , 1986 .

[58]  J. M. Ryan,et al.  Process improves acid gas separation , 1982 .

[59]  J. Gmehling,et al.  PSRK: A Group Contribution Equation of State Based on UNIFAC , 1991 .

[60]  P. Alessi,et al.  Vapor–Liquid Equilibrium , 1992, Distillation.

[61]  A. Galindo,et al.  Predicting the High-Pressure Phase Equilibria of Water + n-Alkanes Using a Simplified SAFT Theory with Transferable Intermolecular Interaction Parameters , 1996 .

[62]  Donald L. Katz,et al.  Phase Equilibria in the Carbon Dioxide–Methane System , 1954 .

[63]  B. Sage,et al.  Phase Equilibrium in Hydrocarbon Systems.Methane–Carbon Dioxide System in the Gaseous Region , 1944 .

[64]  Ralf Dohrn,et al.  Thermophysical properties—Industrial directions , 2002 .

[65]  Gael D. Ulrich,et al.  A Guide to Chemical Engineering Process Design and Economics , 1984 .

[66]  Jürgen Gmehling,et al.  Development of a Universal Group Contribution Equation of State. 2. Prediction of Vapor-Liquid Equilibria for Asymmetric Systems , 2002 .

[67]  Jürgen Gmehling,et al.  Development of an universal group contribution equation of state , 2001 .

[68]  K. Gasem,et al.  Equilibrium phase compositions, phase densities, and interfacial tensions for CO sub 2 + hydrocarbon systems; CO sub 2 + n-butane + n-decane , 1990 .

[69]  George Jackson,et al.  THE THERMODYNAMICS OF MIXTURES AND THE CORRESPONDING MIXING RULES IN THE SAFT-VR APPROACH FOR POTENTIALS OF VARIABLE RANGE , 1998 .

[70]  B. Sage,et al.  Phase Equilibria in Hydrocarbon Systems MethaneDecane System , 1940 .

[71]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[72]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[73]  Aage Fredenslund,et al.  Group‐contribution estimation of activity coefficients in nonideal liquid mixtures , 1975 .

[74]  E. A. Brignole,et al.  MOLECULAR SOLVENT DESIGN AND NEAR CRITICAL SOLVENTS OPTIMIZATION WITH ECOFAC , 2003 .

[75]  A. Galindo,et al.  Predicting the High-Pressure Phase Equilibria of Binary Mixtures of Perfluoro-n-alkanes + n-Alkanes Using the SAFT-VR Approach , 1998 .

[76]  J. Prausnitz,et al.  High-pressure vapor-liquid equilibria for carbon dioxide/n-decane, carbon dioxide/tetralin, and carbon dioxide/n-decane/tetralin at 71.1 and 104.4.degree. C , 1990 .

[77]  D. J. Brennan,et al.  New Factors for Capital Cost Estimation in Evolving Process Designs , 2002 .

[78]  Clare McCabe,et al.  Developing a predictive group-contribution-based SAFT-VR equation of state , 2009 .

[79]  Matthew K. Silva,et al.  Equilibrium Phase Compositions of CO2/Hydrocarbon Mixtures Part 1: Measurement by a Continuous Multiple-Contact Experiment , 1983 .

[80]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[81]  T. S. Brown,et al.  Vapor—liquid equilibria in the carbon dioxide-ethane system , 1988 .

[82]  André Bardow,et al.  Continuous-Molecular Targeting for Integrated Solvent and Process Design , 2010 .

[83]  R. Schucker,et al.  Comparison of High-Pressure Vapor−Liquid Equilibria of Mixtures of CO2 or Propane with Nonane and C9 Alkylbenzenes , 1996 .

[84]  Don W. Green,et al.  Perry's chemical engineers' handbook. 7th ed. , 1997 .

[85]  J. Gmehling,et al.  Prediction of vapor–liquid equilibria for asymmetric systems at low and high pressures with the PSRK model , 1998 .

[86]  W. R. Anderson,et al.  Liquid-vapor equilibria at 250.00.deg.K for systems containing methane, ethane, and carbon dioxide , 1976 .

[87]  J. P. Kohn,et al.  Multiphase and volumetric equilibria of the methane-n-decane binary system at temperatures between -36.degree. and 150.degree. , 1967 .

[88]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[89]  J. Gmehling,et al.  Development of a Universal Group Contribution Equation of State III. Prediction of Vapor−Liquid Equilibria, Excess Enthalpies, and Activity Coefficients at Infinite Dilution with the VTPR Model , 2002 .

[90]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[91]  George Jackson,et al.  Mixtures of associating spherical and chain molecules , 1989 .

[92]  S. Saito,et al.  Measurement of vapor-liquid equilibria at elevated temperatures and pressures using a flow type apparatus , 1986 .

[93]  C. Peters,et al.  Phase equilibria of (methane + n-hexadecane) and (p, Vm, T) of n-hexadecane , 1985 .

[94]  G. Schneider,et al.  Fluid phase equilibrium studies on binary and ternary mixtures of carbon dioxide with hexadecane, 1-dodecanol, 1,8-octanediol and dotriacontane at 393.2 K and at pressures up to 100 MPa , 1991 .

[95]  B. Sage,et al.  Phase Equilibria in Hydrocarbon Systems. Volumetric and Phase Behavior of the n-Decane-CO2 System. , 1963 .

[96]  George Jackson,et al.  Modeling the Cloud Curves and the Solubility of Gases in Amorphous and Semicrystalline Polyethylene with the SAFT-VR Approach and Flory Theory of Crystallization , 2004 .

[97]  A. Galindo,et al.  Predicting the High-Pressure Phase Equilibria of Binary Mixtures of n-Alkanes Using the SAFT-VR Approach , 1998 .

[98]  A. Galindo,et al.  Modelling the phase equilibria and excess properties of the water + carbon dioxide binary mixture , 2007 .

[99]  Joachim Gross,et al.  An equation-of-state contribution for polar components : Quadrupolar molecules , 2005 .

[100]  D. Macleod On a relation between surface tension and density , 1923 .

[101]  G. Ali Mansoori,et al.  Surface tension prediction for pure fluids , 1996, 1802.02201.

[102]  B. Sage,et al.  Phase Equilibria in HydrocarbonSystems , 1942 .

[103]  Claire S. Adjiman,et al.  A generalisation of the SAFT-γ group contribution method for groups comprising multiple spherical segments , 2008 .

[104]  John S. Rowlinson,et al.  Liquids and liquid mixtures , 1959 .

[105]  Patrick Linke,et al.  Multiobjective molecular design for integrated process‐solvent systems synthesis , 2006 .

[106]  T. S. Brown,et al.  Vapor + Liquid Equilibria for the Ternary System Methane + Ethane + Carbon Dioxide at 230 K and Its Constituent Binaries at Temperatures from 207 to 270 K , 1995 .

[107]  Paul I. Barton Energy Systems Engineering , 2009 .

[108]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[109]  Richard J. Sadus,et al.  Equations of state for the calculation of fluid-phase equilibria , 2000 .

[110]  J. P. Kohn,et al.  Multiphase and Volumetric Equilibria of the Methane-n-Octane System at Temperatures between -110o and 150o C. , 1964 .

[111]  Mario R. Eden,et al.  A novel algorithm for molecular synthesis using enhanced property operators , 2009, Comput. Chem. Eng..

[112]  Erich A. Müller,et al.  Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches , 2001 .

[113]  Antonis C. Kokossis,et al.  On the development of novel chemicals using a systematic optimisation approach. Part II. Solvent design , 2000 .

[114]  Franklin M. Orr,et al.  Development of Miscibility in Four-Component CO2 Floods , 1993 .

[115]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[116]  V. Mohr,et al.  Acid and sour gas treating processes , 1984 .

[117]  Sugata P. Tan,et al.  Recent Advances and Applications of Statistical Associating Fluid Theory , 2008 .

[118]  E. A. Brignole,et al.  High pressure phase equilibrium modeling of mixtures containing associating compounds and gases , 1997 .

[119]  G. Jackson,et al.  Thermodynamics of Liquid Mixtures of Xenon with Alkanes: (Xenon + Ethane) and (Xenon + Propane) , 2000 .

[120]  W. Wagner,et al.  Measurements of the(p,ρ,T) relation of methane and carbon dioxide in the temperature range 240 K to 520 K at pressures up to 30 MPa using a new accurate single-sinker densimeter , 2001 .

[121]  Claire S. Adjiman,et al.  Optimal Solvent Design for Batch Separation Based on Economic Performance , 2003 .

[122]  M. Moshfeghian,et al.  Evaluation of vapor—liquid equilibrium of CO2 binary systems using UNIQUAC-based Huron—Vidal mixing rules , 1997 .

[123]  A. Fredenslund,et al.  Measurement and prediction of equilibrium ratios for the C2H6+ CO2 system , 1974 .

[124]  K. Gasem,et al.  Solubility of methane in hexane, decane, and dodecane at temperatures from 311 to 423 K and pressures to 10.4 MPa , 1992 .

[125]  A. Galindo,et al.  Prediction of binary intermolecular potential parameters for use in modelling fluid mixtures , 2008 .