Quantum state discrimination using noisy quantum neural networks

Near-term quantum computers are noisy, and therefore must run algorithms with a low circuit depth and qubit count. Here we investigate how noise affects a quantum neural network (QNN) for state discrimination, applicable on near-term quantum devices as it fulfils the above criteria. We find that when simulating gradient calculation on a noisy device, a large number of parameters is disadvantageous. By introducing a new smaller circuit ansatz we overcome this limitation, and find that the QNN performs well at noise levels of current quantum hardware. We also show that networks trained at higher noise levels can still converge to useful parameters. Our findings show that noisy quantum computers can be used in applications for state discrimination and for classifiers of the output of quantum generative adversarial networks.

[1]  V. Negnevitsky,et al.  Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register , 2018, Nature.

[2]  Lei Wang,et al.  Variational quantum eigensolver with fewer qubits , 2019, Physical Review Research.

[3]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[4]  A. Hayashi,et al.  Unitary-process discrimination with error margin , 2009, 0912.2610.

[5]  T. Martínez,et al.  Hybrid Quantum/Classical Derivative Theory: Analytical Gradients and Excited-State Dynamics for the Multistate Contracted Variational Quantum Eigensolver , 2019, 1906.08728.

[6]  E. Knill Quantum Computing with Very Noisy Devices , 1998 .

[7]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[8]  Giacomo Nannicini,et al.  Improving Variational Quantum Optimization using CVaR , 2019, Quantum.

[9]  Anthony Chefles Quantum state discrimination , 2000 .

[10]  W. Marsden I and J , 2012 .

[11]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[12]  Simone Severini,et al.  Universal discriminative quantum neural networks , 2018, Quantum Machine Intelligence.

[13]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[14]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[15]  Mark Hillery,et al.  Quantum filtering and discrimination between sets of Boolean functions. , 2003, Physical review letters.

[16]  E. Bagan,et al.  Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes , 2012, 1206.4145.

[17]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[18]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[19]  Masoud Mohseni,et al.  Optical realization of optimal unambiguous discrimination for pure and mixed quantum states. , 2004, Physical review letters.

[20]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[21]  G. Guo,et al.  Probabilistic Cloning and Identification of Linearly Independent Quantum States , 1998, quant-ph/9804064.

[22]  Dong Guohua,et al.  Minimum-error quantum state discrimination based on semidefinite programming , 2008, 2008 27th Chinese Control Conference.

[23]  J. Fiurášek,et al.  Finding optimal strategies for minimum-error quantum-state discrimination , 2002, quant-ph/0201109.

[24]  Johannes Jakob Meyer,et al.  Stochastic gradient descent for hybrid quantum-classical optimization , 2019, Quantum.

[25]  Simone Severini,et al.  Adversarial quantum circuit learning for pure state approximation , 2018, New Journal of Physics.

[26]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[27]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[28]  Patrick J. Coles,et al.  Variational fast forwarding for quantum simulation beyond the coherence time , 2019, npj Quantum Information.

[29]  Quoc V. Le,et al.  Adding Gradient Noise Improves Learning for Very Deep Networks , 2015, ArXiv.

[30]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[31]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[32]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[33]  Henry Hoffmann,et al.  Partial Compilation of Variational Algorithms for Noisy Intermediate-Scale Quantum Machines , 2019, MICRO.

[34]  Yonina C. Eldar A semidefinite programming approach to optimal unambiguous discrimination of quantumstates , 2003, IEEE Trans. Inf. Theory.

[35]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[36]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[37]  Eyob A. Sete,et al.  Demonstration of a parametrically activated entangling gate protected from flux noise , 2019, Physical Review A.

[38]  A. Hayashi,et al.  State discrimination with error margin and its locality , 2008, 0804.4349.

[39]  S. Barnett,et al.  Quantum state discrimination , 2008, 0810.1970.

[40]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[41]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[42]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[43]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[44]  Yoshua Bengio,et al.  Unitary Evolution Recurrent Neural Networks , 2015, ICML.

[45]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[46]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[47]  M. Benedetti,et al.  Quantum circuit structure learning , 2019, 1905.09692.

[48]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[49]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[50]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[51]  U. Herzog Optimal measurements for the discrimination of quantum states with a fixed rate of inconclusive results , 2015, 1504.03917.

[52]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[53]  Joonwoo Bae,et al.  Quantum state discrimination and its applications , 2015, 1707.02571.

[54]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.