Near-Optimal Encoding for Sigma-Delta Quantization of Finite Frame Expansions
暂无分享,去创建一个
[1] Jeffrey C. Lagarias,et al. On the robustness of single-loop sigma-Delta modulation , 2001, IEEE Trans. Inf. Theory.
[2] Dustin G. Mixon,et al. Finite Frames and Filter Banks , 2013 .
[3] C. S. Güntürk. One‐bit sigma‐delta quantization with exponential accuracy , 2003 .
[4] John J. Benedetto,et al. Sigma-delta (/spl Sigma//spl Delta/) quantization and finite frames , 2006, IEEE Trans. Inf. Theory.
[5] Ulaş Ayaz. Sigma-delta quantization and Sturmian words , 2009 .
[6] Felix Krahmer,et al. An optimal family of exponentially accurate one‐bit Sigma‐Delta quantization schemes , 2010, ArXiv.
[7] Ting Sun,et al. Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..
[8] Holger Rauhut,et al. A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.
[9] Sanjoy Dasgupta,et al. An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.
[10] Rayan Saab,et al. Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing , 2013, ArXiv.
[11] Dimitris Achlioptas,et al. Database-friendly random projections , 2001, PODS.
[12] T. P. Kohman,et al. Coded-aperture x- or γ-ray telescope with least-squares image reconstruction. III. Data acquisition and analysis enhancements , 1997 .
[13] Peter Frankl,et al. The Johnson-Lindenstrauss lemma and the sphericity of some graphs , 1987, J. Comb. Theory B.
[14] I. Daubechies,et al. Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order , 2003 .
[15] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[16] Rachel Ward,et al. New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..
[17] D. Brady. Multiplex sensors and the constant radiance theorem. , 2002, Optics letters.
[18] Hiroshi Inose,et al. A unity bit coding method by negative feedback , 1963 .
[19] R. Schreier,et al. Delta-sigma data converters : theory, design, and simulation , 1997 .
[20] G. Lorentz,et al. Constructive approximation : advanced problems , 1996 .
[21] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[22] Rayan Saab,et al. Quantization and Finite Frames , 2013 .
[23] Avideh Zakhor,et al. New properties of sigma-delta modulators with DC inputs , 1992, IEEE Trans. Commun..
[24] Özgür Yılmaz,et al. Sobolev Duals in Frame Theory and Sigma-Delta Quantization , 2010 .
[25] J. Neumann. Distribution of the Ratio of the Mean Square Successive Difference to the Variance , 1941 .
[26] Rayan Saab,et al. Sobolev Duals for Random Frames and Sigma-Delta Quantization of Compressed Sensing Measurements , 2010, ArXiv.
[27] Rayan Saab,et al. Root-Exponential Accuracy for Coarse Quantization of Finite Frame Expansions , 2012, IEEE Transactions on Information Theory.
[28] Rayan Saab,et al. Sobolev Duals for Random Frames and ΣΔ Quantization of Compressed Sensing Measurements , 2013, Found. Comput. Math..
[29] John J. Benedetto,et al. Sigma-delta quantization and finite frames , 2004, ICASSP.
[30] T. P. Kohman,et al. Coded‐aperture x‐ or γ‐ray telescope with least‐squares image reconstruction. I. Design considerations , 1989 .