Near-Optimal Encoding for Sigma-Delta Quantization of Finite Frame Expansions

In this paper we investigate encoding the bit-stream resulting from coarse Sigma-Delta quantization of finite frame expansions (i.e., overdetermined representations) of vectors. We show that for a wide range of finite-frames, including random frames and piecewise smooth frames, there exists a simple encoding algorithm—acting only on the Sigma-Delta bit stream—and an associated decoding algorithm that together yield an approximation error which decays exponentially in the number of bits used. The encoding strategy consists of applying a discrete random operator to the Sigma-Delta bit stream and assigning a binary codeword to the result. The reconstruction procedure is essentially linear and equivalent to solving a least squares minimization problem.

[1]  Jeffrey C. Lagarias,et al.  On the robustness of single-loop sigma-Delta modulation , 2001, IEEE Trans. Inf. Theory.

[2]  Dustin G. Mixon,et al.  Finite Frames and Filter Banks , 2013 .

[3]  C. S. Güntürk One‐bit sigma‐delta quantization with exponential accuracy , 2003 .

[4]  John J. Benedetto,et al.  Sigma-delta (/spl Sigma//spl Delta/) quantization and finite frames , 2006, IEEE Trans. Inf. Theory.

[5]  Ulaş Ayaz Sigma-delta quantization and Sturmian words , 2009 .

[6]  Felix Krahmer,et al.  An optimal family of exponentially accurate one‐bit Sigma‐Delta quantization schemes , 2010, ArXiv.

[7]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[8]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[9]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[10]  Rayan Saab,et al.  Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing , 2013, ArXiv.

[11]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[12]  T. P. Kohman,et al.  Coded-aperture x- or γ-ray telescope with least-squares image reconstruction. III. Data acquisition and analysis enhancements , 1997 .

[13]  Peter Frankl,et al.  The Johnson-Lindenstrauss lemma and the sphericity of some graphs , 1987, J. Comb. Theory B.

[14]  I. Daubechies,et al.  Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order , 2003 .

[15]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[16]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[17]  D. Brady Multiplex sensors and the constant radiance theorem. , 2002, Optics letters.

[18]  Hiroshi Inose,et al.  A unity bit coding method by negative feedback , 1963 .

[19]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[20]  G. Lorentz,et al.  Constructive approximation : advanced problems , 1996 .

[21]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[22]  Rayan Saab,et al.  Quantization and Finite Frames , 2013 .

[23]  Avideh Zakhor,et al.  New properties of sigma-delta modulators with DC inputs , 1992, IEEE Trans. Commun..

[24]  Özgür Yılmaz,et al.  Sobolev Duals in Frame Theory and Sigma-Delta Quantization , 2010 .

[25]  J. Neumann Distribution of the Ratio of the Mean Square Successive Difference to the Variance , 1941 .

[26]  Rayan Saab,et al.  Sobolev Duals for Random Frames and Sigma-Delta Quantization of Compressed Sensing Measurements , 2010, ArXiv.

[27]  Rayan Saab,et al.  Root-Exponential Accuracy for Coarse Quantization of Finite Frame Expansions , 2012, IEEE Transactions on Information Theory.

[28]  Rayan Saab,et al.  Sobolev Duals for Random Frames and ΣΔ Quantization of Compressed Sensing Measurements , 2013, Found. Comput. Math..

[29]  John J. Benedetto,et al.  Sigma-delta quantization and finite frames , 2004, ICASSP.

[30]  T. P. Kohman,et al.  Coded‐aperture x‐ or γ‐ray telescope with least‐squares image reconstruction. I. Design considerations , 1989 .