Finite Element Analysis of Viscoelastic Nanofluid Flow with Energy Dissipation and Internal Heat Source/Sink Effects

[1]  B. J. Gireesha,et al.  Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium , 2016 .

[2]  N. Akbar,et al.  Oblique stagnation flow of Jeffery fluid over a stretching convective surface , 2015 .

[3]  O. Bég,et al.  An analytical solution for convective heat transfer of viscoelastic flows in rotating curved pipes , 2015 .

[4]  O. Bég,et al.  Heat and Mass Transfer of Nanofluid from Horizontal Cylinder to Micropolar Fluid , 2015 .

[5]  Rizwan Ul Haq,et al.  Buoyancy and Radiation Effect on Stagnation Point Flow of Micropolar Nanofluid Along a Vertically Convective Stretching Surface , 2015, IEEE Transactions on Nanotechnology.

[6]  O. Anwar Bég,et al.  Mixed convection flow along an inclined permeable plate: effect of magnetic field, nanolayer conductivity and nanoparticle diameter , 2015, Applied Nanoscience.

[7]  O. Anwar Bég,et al.  Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: A model for bio-nano-materials processing , 2014 .

[8]  Masood Khan,et al.  Three-Dimensional Flow of an Oldroyd-B Nanofluid towards Stretching Surface with Heat Generation/Absorption , 2014, PloS one.

[9]  T. Hayat,et al.  Radiative Hydromagnetic Flow of Jeffrey Nanofluid by an Exponentially Stretching Sheet , 2014, PloS one.

[10]  M. J. Uddin,et al.  Mathematical Modelling of Radiative Hydromagnetic Thermosolutal Nanofluid Convection Slip Flow in Saturated Porous Media , 2014 .

[11]  Mohammad Mehdi Rashidi,et al.  COMPARATIVE NUMERICAL STUDY OF SINGLE-PHASE AND TWO-PHASE MODELS FOR BIO-NANOFLUID TRANSPORT PHENOMENA , 2014 .

[12]  Saudi Arabia,et al.  New Theoretical and Numerical Results for the Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet , 2013 .

[13]  Puneet Rana,et al.  Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium , 2012, Comput. Math. Appl..

[14]  Ioan Pop,et al.  Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet , 2012 .

[15]  Sohail Nadeem,et al.  Boundary layer flow of nanofluid over an exponentially stretching surface , 2012, Nanoscale Research Letters.

[16]  R. Bhargava,et al.  Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study , 2012 .

[17]  W. Khan,et al.  Heat and mass transfer in non-Newtonian nanofluids over a non-isothermal stretching wall , 2011 .

[18]  M. M. Piñeiro,et al.  Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids , 2011, Nanoscale research letters.

[19]  Dharmendra Tripathi,et al.  Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids: a bio-nano-engineering model , 2011 .

[20]  R. Kandasamy,et al.  Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection , 2011 .

[21]  Rahman Saidur,et al.  A REVIEW ON APPLICATIONS AND CHALLENGES OF NANOFLUIDS , 2011 .

[22]  S. Antipolis,et al.  FINITE ELEMENT MODELING OF TRANSPIRING THIRD-GRADE VISCOELASTIC BIOTECHNOLOGICAL FLUID FLOW IN A DARCIAN PERMEABLE HALF-SPACE , 2011 .

[23]  R. Bhargava,et al.  Flow and Heat Transfer Analysis of a Nanofluid Along a Vertical Flat Plate with Non-Uniform Heating Using Fem: Effect of Nanoparticle Diameter , 2011 .

[24]  Chien-Hsin Chen,et al.  On the analytic solution of MHD flow and heat transfer for two types of viscoelastic fluid over a stretching sheet with energy dissipation, internal heat source and thermal radiation , 2010 .

[25]  Donald A. Nield,et al.  Natural convective boundary-layer flow of a nanofluid past a vertical plate , 2010 .

[26]  Haisheng Chen,et al.  Rheological behaviour of nanofluids containing tube / rod-like nanoparticles , 2009 .

[27]  Kai Zhang,et al.  Review of nanofluids for heat transfer applications , 2009 .

[28]  K. Pal,et al.  Polymeric Hydrogels: Characterization and Biomedical Applications , 2009 .

[29]  Rama Bhargava,et al.  Numerical study of heat transfer of a third grade viscoelastic fluid in non-Darcy porous media with thermophysical effects , 2008 .

[30]  B. Raj,et al.  Effect of clustering on the thermal conductivity of nanofluids , 2008 .

[31]  E. Kumacheva,et al.  Patterning surfaces with functional polymers. , 2008, Nature materials.

[32]  Haisheng Chen,et al.  Rheological behaviour of ethylene glycol based titania nanofluids , 2007 .

[33]  Somchai Wongwises,et al.  Critical review of heat transfer characteristics of nanofluids , 2007 .

[34]  E. Giannelis,et al.  Mechanism of heat transport in nanofluids , 2007 .

[35]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[36]  S. Asghar,et al.  Mixed convection flow of second grade fluid along a vertical stretching flat surface with variable surface temperature , 2007 .

[37]  K. Leong,et al.  A model for the thermal conductivity of nanofluids – the effect of interfacial layer , 2006 .

[38]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[39]  S. Khan Heat transfer in a viscoelastic fluid flow over a stretching surface with heat source/sink, suction/blowing and radiation , 2006 .

[40]  C. Chon,et al.  Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement , 2005 .

[41]  D. Cahill,et al.  Nanofluids for thermal transport , 2005 .

[42]  I. Liu,et al.  Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to a transverse magnetic field , 2004 .

[43]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[44]  O. Bég,et al.  Mathematical and Numerical Modeling of Non-Newtonian Thermo-Hydrodynamic Flow in Non-Darcy Porous Media , 2004 .

[45]  D. Kipke,et al.  Flow properties of liquid calcium alginate polymer injected through medical microcatheters for endovascular embolization. , 2002, Journal of biomedical materials research.

[46]  A. Margaritis,et al.  Production and Mass Transfer Characteristics of Non-Newtonian Biopolymers for Biomedical Applications , 2002, Critical reviews in biotechnology.

[47]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[48]  M. Sarma,et al.  Flow of a second-order fluid over a stretching surface having power-law temperature , 1998 .

[49]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[50]  J. E. Dunn,et al.  Fluids of differential type: Critical review and thermodynamic analysis , 1995 .

[51]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[52]  Rama Subba Reddy Gorla,et al.  Free convection on a vertical stretching surface with suction and blowing , 1994 .

[53]  B. Khomami,et al.  A comparative study of higher‐ and lower‐order finite element techniques for computation of viscoelastic flows , 1994 .

[54]  Ivo Babuška,et al.  The h, p and h-p version of the finite element method: basis theory and applications , 1992 .

[55]  C. Y. Wang,et al.  Free convection on a vertical stretching surface , 1989 .

[56]  B. S. Dandapat,et al.  Flow and heat transfer in a viscoelastic fluid over a stretching sheet , 1989 .

[57]  J. B. McLeod,et al.  On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary , 1987 .

[58]  Kumbakonam R. Rajagopal,et al.  Flow of a viscoelastic fluid over a stretching sheet , 1984 .

[59]  Kumbakonam R. Rajagopal,et al.  Anomalous features in the model of “second order fluids” , 1979 .

[60]  J. E. Dunn,et al.  Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade , 1974 .

[61]  B. D. Coleman,et al.  An approximation theorem for functionals, with applications in continuum mechanics , 1960 .