Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells

Abstract A bottom-up technique using an aqueous solution method was adopted to fabricate a bio-mimicked antireflection (AR) coating for a CuInGaSe 2 (CIGS) solar cell. On controlling the morphology of the solution-grown zinc oxide (ZnO) nanostructure the average reflectance of the CIGS solar cell employing the bio-mimicked AR coating decreased from 6.14% to 1.46%, and the efficiency of the solar cell increased from 10% to 11.5%. The mechanism by which the solar cell′s efficiency was enhanced is thought to be the effect of the gradual increase in the refractive index between air and the top electrode due to the insertion of the ZnO nanostructure.

[1]  M. Zeman,et al.  ZnO:Al films prepared by rf magnetron sputtering applied as back reflectors in thin-film silicon solar cells , 2008 .

[2]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[3]  Zhaoning Yu,et al.  Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff , 2003 .

[4]  R. Morf,et al.  Submicrometer gratings for solar energy applications. , 1995, Applied optics.

[5]  G. Jellison,et al.  Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics. , 1997, Applied optics.

[6]  C. Bernhard,et al.  Structural and functional adaptation in a visual system - Strukturelle und funktionelle Adaptation in einem visuellen System , 1967 .

[7]  W. Shafarman,et al.  Chemical surface deposition of ultra-thin cadmium sulfide films for high performance and high cadmium utilization , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[8]  Viresh Dutta,et al.  Thin‐film solar cells: an overview , 2004 .

[9]  J. Hauser,et al.  Antireflection layers for GaAs solar cells , 1982 .

[10]  B. S. Thornton,et al.  Limit of the moth’s eye principle and other impedance-matching corrugations for solar-absorber design , 1975 .

[11]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[12]  G. M. Morris,et al.  Antireflection structured surfaces for the infrared spectral region. , 1993, Applied optics.

[13]  J. Hsu,et al.  ZnO nanostructures as efficient antireflection layers in solar cells. , 2008, Nano letters.

[14]  D. Riley,et al.  Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. , 2006, The journal of physical chemistry. B.

[15]  N Nishida,et al.  Antireflection effect in ultrahigh spatial-frequency holographic relief gratings. , 1987, Applied optics.

[16]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[17]  M. Kuittinen,et al.  A wide-angle antireflection surface for the visible spectrum , 2009, Nanotechnology.

[18]  D. Riley,et al.  The kinetics of the hydrothermal growth of ZnO nanostructures , 2007 .

[19]  Ulrike Schulz,et al.  Review of modern techniques to generate antireflective properties on thermoplastic polymers. , 2006, Applied optics.

[20]  L. Zighed,et al.  New designs for graded refractive index antireflection coatings , 2005 .

[21]  Emmanuel Drouard,et al.  Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell. , 2010, Optics express.

[22]  Peng Jiang,et al.  Broadband moth-eye antireflec tion coatings on silicon , 2008 .

[23]  W. Southwell Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces , 1991 .