Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells
暂无分享,去创建一个
Tae Il Lee | Joong Hwee Cho | J. Myoung | Jae Min Myoung | T. Lee | Junjie Xiong | Beom Ki Shin | Changhun Hwang | Gapseong Noh | B. Shin | Jun-jie Xiong | Chan-Seung Hwang | Gapseong Noh
[1] M. Zeman,et al. ZnO:Al films prepared by rf magnetron sputtering applied as back reflectors in thin-film silicon solar cells , 2008 .
[2] M. Hutley,et al. The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .
[3] Zhaoning Yu,et al. Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff , 2003 .
[4] R. Morf,et al. Submicrometer gratings for solar energy applications. , 1995, Applied optics.
[5] G. Jellison,et al. Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics. , 1997, Applied optics.
[6] C. Bernhard,et al. Structural and functional adaptation in a visual system - Strukturelle und funktionelle Adaptation in einem visuellen System , 1967 .
[7] W. Shafarman,et al. Chemical surface deposition of ultra-thin cadmium sulfide films for high performance and high cadmium utilization , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.
[8] Viresh Dutta,et al. Thin‐film solar cells: an overview , 2004 .
[9] J. Hauser,et al. Antireflection layers for GaAs solar cells , 1982 .
[10] B. S. Thornton,et al. Limit of the moth’s eye principle and other impedance-matching corrugations for solar-absorber design , 1975 .
[11] Daniel Derkacs,et al. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .
[12] G. M. Morris,et al. Antireflection structured surfaces for the infrared spectral region. , 1993, Applied optics.
[13] J. Hsu,et al. ZnO nanostructures as efficient antireflection layers in solar cells. , 2008, Nano letters.
[14] D. Riley,et al. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. , 2006, The journal of physical chemistry. B.
[15] N Nishida,et al. Antireflection effect in ultrahigh spatial-frequency holographic relief gratings. , 1987, Applied optics.
[16] J. Springer,et al. TCO and light trapping in silicon thin film solar cells , 2004 .
[17] M. Kuittinen,et al. A wide-angle antireflection surface for the visible spectrum , 2009, Nanotechnology.
[18] D. Riley,et al. The kinetics of the hydrothermal growth of ZnO nanostructures , 2007 .
[19] Ulrike Schulz,et al. Review of modern techniques to generate antireflective properties on thermoplastic polymers. , 2006, Applied optics.
[20] L. Zighed,et al. New designs for graded refractive index antireflection coatings , 2005 .
[21] Emmanuel Drouard,et al. Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell. , 2010, Optics express.
[22] Peng Jiang,et al. Broadband moth-eye antireflec tion coatings on silicon , 2008 .
[23] W. Southwell. Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces , 1991 .