Misfit dislocations in nanocomposites with quantum dots, nanowires and their ensembles

We review theoretical concepts and experimental results on the physics of misfit dislocations in nanocomposite solids with quantum dots (QDs) and nanowires (quantum wires). Special attention is paid to thermodynamic theoretical models of formation of misfit dislocations in QDs and nanowires, including composite core–shell nanowires. The effects of misfit dislocations on the film growth mode during heteroepitaxy and phase transitions in QD systems are analysed. Experimental results and theoretical models of the ordered spatial arrangement of QDs growing on composite substrates with misfit dislocation networks are discussed. The influence of subsurface dislocations in composite substrates on the nucleation of QDs and nanowires on the substrate surface is considered. Models of misfit strain relaxation and dislocation formation in nanofilms on compliant substrates are also reviewed.

[1]  Bruno Gilles,et al.  II–VI quantum dot formation induced by surface energy change of a strained layer , 2003 .

[2]  E. Schöll,et al.  Kinetically enhanced correlation and anticorrelation effects in self-organized quantum dot stacks , 2003 .

[3]  I. Krestnikov,et al.  Gain studies of (Cd, Zn)Se quantum islands in a ZnSe matrix , 1998 .

[4]  Oliver G. Schmidt,et al.  Multiple layers of self-asssembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion, and island formation , 2000 .

[5]  Felix Ejeckam,et al.  Lattice engineered compliant substrate for defect-free heteroepitaxial growth , 1997 .

[6]  P. M. Stoop,et al.  Misfit accommodation by compliant substrates , 1999 .

[7]  Island formation in Ge/Si epitaxy , 1995 .

[8]  Huajian Gao,et al.  Atomistic models of dislocation formation at crystal surface ledges in Si1-xGex/Si(100) heteroepitaxial thin films , 1999 .

[9]  L. Freund,et al.  Mechanics of coherent and dislocated island morphologies in strained epitaxial material systems , 1997 .

[10]  A. Romanov,et al.  Misfit dislocation loop nucleation at a quantum dot , 2004 .

[11]  M. Tringides Surface diffusion : atomistic and collective processes , 1997 .

[12]  Tong-Yi Zhang,et al.  Criteria for formation of interface dislocations in a finite thickness epilayer deposited on a substrate , 1999 .

[13]  Spontaneous growth and luminescence of Si/SiOx core-shell nanowires , 2003 .

[14]  Computer simulations of the Stranski–Krastanov growth of heteroepitaxial films with elastic anisotropy , 2003 .

[15]  Zhong Lin Wang,et al.  Side-by-side silicon carbide–silica biaxial nanowires: Synthesis, structure, and mechanical properties , 2000 .

[16]  H. Hirayama,et al.  Formation of GaN nanopillars by selective area growth using ammonia gas source molecular beam epitaxy , 2002 .

[17]  Holy,et al.  Tuning of vertical and lateral correlations in self-organized PbSe/Pb1-xEuxTe quantum dot superlattices , 2000, Physical review letters.

[18]  H. Strunk,et al.  Dislocation glide in {110} planes in semiconductors with diamond or zinc‐blende structure , 1993 .

[19]  H. Mariette,et al.  Self‐assembled quantum dot formation induced by surface energy change of a strained two‐dimensional layer , 2004 .

[20]  V. Shchukin,et al.  Metastability of ultradense arrays of quantum dots. , 2003, Physical review letters.

[21]  A. Sheinerman,et al.  Split and sealing of dislocated pipes at the front of a growing crystal , 2004 .

[22]  J. Klem,et al.  Dislocation formation mechanism in strained InxGa1−xAs islands grown on GaAs(001) substrates , 1996 .

[23]  A. Kolesnikova,et al.  Misfit dislocation loops and critical parameters of quantum dots and wires , 2004 .

[24]  S J Pennycook,et al.  Crack-Like Sources of Dislocation Nucleation and Multiplication in Thin Films , 1995, Science.

[25]  C. Ratsch,et al.  Equilibrium theory of the Stranski-Krastanov epitaxial morphology , 1993 .

[26]  Lili Vescan,et al.  Organization of self-assembled quantum dots in SiGe/Si multilayers: effect of strain and substrate curvature , 2002 .

[27]  G. Solomon,et al.  Increased size uniformity through vertical quantum dot columns , 1997 .

[28]  W. H. Weinberg,et al.  Combined effects of substrate compliance and film compositional grading on strain relaxation in layer-by-layer semiconductor heteroepitaxy: the case of InAs/In , 2003 .

[29]  I. Ovid’ko,et al.  Misfit dislocations in composites with nanowires , 2003 .

[30]  L. Bourgeois,et al.  Preparation and structure of magnesium oxide coated indium nanowires , 2003 .

[31]  E. Bourhis,et al.  Twist-bonded compliant substrates for III-V semiconductors heteroepitaxy , 2001 .

[32]  X. Liao,et al.  Dislocation-induced spatial ordering of InAs quantum dots: Effects on optical properties , 2002 .

[33]  J. Moon,et al.  Semiconductor nanowires surrounded by cylindrical Al2O3 shells , 2003 .

[34]  A. Bourret,et al.  Compliant substrates: a review on the concept, techniques and mechanisms , 2000 .

[35]  Yahong Xie,et al.  Influence of a buried misfit dislocation network on the pyramid-to-dome transition size of Ge self-assembled quantum dots on Si(001) , 2003 .

[36]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[37]  Shui-Tong Lee,et al.  Semiconductor nanowires: synthesis, structure and properties , 2000 .

[38]  T. Ogino,et al.  STM observations of three-dimensional Ge islands on Si(111) surfaces with different step orientations and step-bunching conditions , 2004 .

[39]  A. Barabasi,et al.  SHAPE TRANSITION IN GROWTH OF STRAINED ISLANDS , 1999 .

[40]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[41]  Nikolai N. Ledentsov,et al.  Growth of self-organized quantum dots for optoelectronics applications: nanostructures, nanoepitaxy, defect engineering , 2003 .

[42]  Huajian Gao,et al.  Strain relaxation and defect formation in heteroepitaxial Si1−xGex films via surface roughening induced by controlled annealing experiments , 1997 .

[43]  J. Sturm,et al.  Strain partition of Si/SiGe and SiO2/SiGe on compliant substrates , 2003 .

[44]  Huajian Gao,et al.  Strain Relaxation in Heteroepitaxial Si 1-x Ge x Films via Surface Roughening Processes , 1995 .

[45]  V. Ustinov,et al.  Lateral and vertical ordering in multilayered self-organized InGaAs quantum dots studied by high resolution x-ray diffraction , 1997 .

[46]  M. Lagally,et al.  Self-organized nanostructures in Si1-xGex films on Si(001) , 1998 .

[47]  J. Woodall,et al.  Incoherent interface of InAs grown directly on GaP(001) , 1996 .

[48]  M. Lagally,et al.  Mechanism of organization of three-dimensional islands in SiGe/Si multilayers , 1997 .

[49]  A. Förster,et al.  Critical dimensions for the formation of interfacial misfit dislocations of In0.6Ga0.4As islands on GaAs(001) , 2000 .

[50]  D. Vollath,et al.  Synthesis and Properties of Nanocomposites , 2004 .

[51]  F. Ross,et al.  Dislocated epitaxial islands. , 2000, Physical review letters.

[52]  I. Ovid’ko,et al.  Perfect, partial, and split dislocations in quantum dots , 2002 .

[53]  Ping Liu,et al.  Self-organized growth of three-dimensional quantum-dot superlattices , 2002 .

[54]  Frances M. Ross,et al.  Growth processes and phase transformations studied in situ transmission electron microscopy , 2000, IBM J. Res. Dev..

[55]  Yahong Xie,et al.  Three-stage nucleation and growth of Ge self-assembled quantum dots grown on partially relaxed SiGe buffer layers , 2003 .

[56]  T. Someya,et al.  Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature , 2000 .

[57]  I. Ovid’ko,et al.  Delocalized dislocations in quantum dots , 2004 .

[58]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[59]  Chia-Chun Chen,et al.  Synthesis and characterization of core-shell GaP@GaN and GaN@GaP nanowires , 2003 .

[60]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[61]  Hiroshi Yamaguchi,et al.  Atomic-scale imaging of strain relaxation via misfit dislocations in highly mismatched semiconductor heteroepitaxy: InAs/GaAs(111)A , 1997 .

[62]  A. Sakai,et al.  Self-organized propagation of dislocations in GaN films during epitaxial lateral overgrowth , 2000 .

[63]  C. Humphreys,et al.  Variation of dislocation morphology with strain in Ge_xSi_1−x epilayers on (100)Si , 1990 .

[64]  David Smith,et al.  Evolution of Ge/Si(100) islands: Island size and temperature dependence , 2000 .

[65]  Subramanian S. Iyer,et al.  New approach to the growth of low dislocation relaxed SiGe material , 1994 .

[66]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[67]  G. Dunlop,et al.  The interfacial morphology of strained epitaxial InxGa1−xAs/GaAs , 1991 .

[68]  F. Léonard,et al.  SPINODAL DECOMPOSITION AND DISLOCATION LINES IN THIN FILMS AND BULK MATERIALS , 1998 .

[69]  N. Motta,et al.  Controlling the quantum dot nucleation site , 2003 .

[70]  A. Romanov,et al.  Generation of dislocation loops in strained quantum dots embedded in a heterolayer , 2004 .

[71]  X. Liao,et al.  Alternative mechanism for misfit dislocation generation during high-temperature Ge(Si)/Si (001) island growth , 2002 .

[72]  U. Gösele,et al.  Reduced critical thickness for relaxing heteroepitaxial films on compliant substrates , 2003 .

[73]  C. Thompson,et al.  Evolution of thin-film and surface microstructure , 1991 .

[74]  P. Chu,et al.  Relaxed SiGe-on-insulator fabricated by dry oxidation of sandwiched Si/SiGe/Si structure , 2005 .

[75]  R. Beanland,et al.  Plastic relaxation and relaxed buffer layers for semiconductor epitaxy , 1996 .

[76]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[77]  A. Sheinerman,et al.  Misfit dislocation loops in cylindrical quantum dots , 2004 .

[78]  Bimberg,et al.  Tuning and breakdown of faceting under externally applied stress. , 1995, Physical review. B, Condensed matter.

[79]  M. Hammar,et al.  In situ TEM study of the growth of Ge on Si(111) , 1996 .

[80]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[81]  A. Bourret How to control the self-organization of nanoparticles by bonded thin layers , 1999 .

[82]  Dieter Bimberg,et al.  Spontaneous ordering of nanostructures on crystal surfaces , 1999 .

[83]  I. Ovid’ko,et al.  Relaxation mechanisms in strained nanoislands. , 2002, Physical review letters.

[84]  A. Parasnis,et al.  Dislocations in solids , 1989 .

[85]  Kobayashi,et al.  Vertically self-organized InAs quantum box islands on GaAs(100). , 1995, Physical review letters.

[86]  A. Zunger,et al.  Electronic consequences of lateral composition modulation in semiconductor alloys , 1999 .

[87]  Z. G. Wang,et al.  Ordering growth of InAs quantum dots on ultra-thin InGaAs strained layer , 2004 .

[88]  K. Jacobi,et al.  Lattice defects in InAs quantum dots on the GaAs(-3-1-5)B surface , 2004 .

[89]  G. Bauer,et al.  Strain Induced Vertical and Lateral Correlations in Quantum Dot Superlattices , 1999 .

[90]  B. Voigtländer,et al.  Ordered growth of Ge islands above a misfit dislocation network in a Ge layer on Si(111) , 2000 .

[91]  D. Antoniadis,et al.  Relaxed silicon-germanium on insulator substrate by layer transfer , 2001 .

[92]  G. Kästner Heteroepitaxy on compliant substrates: relaxation of misfit stress at low critical film thickness , 2003 .

[93]  Y. Ni,et al.  Spontaneous ordering of composition pattern in an epitaxial monolayer by subsurfacial dislocation array , 2003 .

[94]  Andrew G. Glen,et al.  APPL , 2001 .

[95]  Younan Xia,et al.  Direct Synthesis of Se@CdSe Nanocables and CdSe Nanotubes by Reacting Cadmium Salts with Se Nanowires , 2003 .

[96]  M. Kummer,et al.  Reversible shape evolution of Ge islands on Si(001). , 2001, Physical review letters.

[97]  G. Springholz,et al.  Nanoscale dislocation patterning in PbTe/PbSe(001) lattice-mismatched heteroepitaxy. , 2001, Physical review letters.

[98]  V. Shchukin,et al.  Suppression of coalescence during the coarsening of quantum dot arrays , 2004 .

[99]  L. Freund,et al.  Minimum energy configuration of epitaxial material clusters on a lattice-mismatched substrate , 1997 .

[100]  Tromp,et al.  Novel strain-induced defect in thin molecular-beam epitaxy layers. , 1989, Physical review letters.

[101]  A. Sakai,et al.  TRANSMISSION ELECTRON MICROSCOPY OF DEFECTS IN GAN FILMS FORMED BY EPITAXIAL LATERAL OVERGROWTH , 1998 .

[102]  Yoshiaki Nakata,et al.  Self-assembled structures of closely stacked InAs islands grown on GaAs by molecular beam epitaxy , 1997 .

[103]  Long-Qing Chen,et al.  Spinodal decomposition in a film with periodically distributed interfacial dislocations , 2004 .

[104]  Tersoff,et al.  Shape transition in growth of strained islands: Spontaneous formation of quantum wires. , 1993, Physical review letters.

[105]  F. Y. Huang Effect of strain transfer on critical thickness for epitaxial layers grown on compliant substrate , 2000 .

[106]  Tong-Yi Zhang,et al.  The critical thickness of an epilayer deposited on a semiconductor-on-insulator compliant substrate , 1999 .

[107]  H. Herman Advances in materials research , 1967 .

[108]  M. G. Norton,et al.  Silicon Carbide Nanosprings , 2003 .

[109]  F. Phillipp,et al.  Synthesis and characterization of nanowires and nanocables , 2000 .

[110]  S. T. Lee,et al.  Silicon-silica nanowires, nanotubes, and biaxial nanowires: inside, outside, and side-by-side growth of silicon versus silica on zeolite. , 2003, Inorganic chemistry.

[111]  K. Shintani,et al.  Elastic energy approach to the strain relaxation mechanism by dislocation splitting and slip in twist-bonded substrates , 2000 .

[112]  A. Sheinerman,et al.  Misfit dislocation loops in composite nanowires , 2004 .

[113]  Takashi Sekiguchi,et al.  Epitaxial heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires. , 2003, Journal of the American Chemical Society.

[114]  Tong-Yi Zhang,et al.  Elasticity studies of the critical thickness of an epilayer deposited on a compliant substrate , 1999 .

[115]  Y. Lo,et al.  New approach to grow pseudomorphic structures over the critical thickness , 1991 .

[116]  Thomas Tsakalakos,et al.  Nanostructures : synthesis, functional properties and applications , 2003 .

[117]  Mattias Hammar,et al.  Relaxation mechanism of Ge islands/Si(001) at low temperature , 1995 .

[118]  N. Jokerst,et al.  A new mechanism for spontaneous nanostructure formation on bottom-patterned compliant substrates , 1997 .

[119]  A. Barabasi,et al.  Spatial ordering of stacked quantum dots , 2000 .

[120]  Frank Fournel,et al.  Ordering of Ge quantum dots with buried Si dislocation networks , 2002 .

[121]  U. Gösele,et al.  A model of strain relaxation in hetero-epitaxial films on compliant substrates , 1998 .

[122]  C. Sone,et al.  Crystal tilting in GaN grown by pendoepitaxy method on sapphire substrate , 1999 .

[123]  Jerry Tersoff,et al.  Stresses and first-order dislocation energetics in equilibrium Stranski-Krastanow islands , 2001 .

[124]  N. Jokerst,et al.  Analysis of In0.07Ga0.93As layers on GaAs compliant substrates by double crystal x-ray diffraction , 1997 .

[125]  A. Claverie,et al.  Local stresses induced by nanoscale As-Sb clusters in GaAs matrix , 2002 .

[126]  R. Stanley Williams,et al.  Dome-to-pyramid shape transition in Ge/Si islands due to strain relaxation by interdiffusion , 2000 .

[127]  I. Ovid’ko,et al.  Enhanced formation of nanowires and quantum dots on dislocated substrates , 2004 .

[128]  A. Sheinerman,et al.  Misfit Disclinations and Dislocation Walls in a Two-Phase Cylindrical Composite , 2001 .

[129]  So,et al.  Stacking InAs islands and GaAs layers: Strongly modulated one‐dimensional electronic systems , 1996 .

[130]  M. Lagally,et al.  SELF-ORGANIZED REPLICATION OF 3D COHERENT ISLAND SIZE AND SHAPE IN MULTILAYER HETEROEPITAXIAL FILMS , 1999 .

[131]  G. Bauer,et al.  Evolution of hexagonal lateral ordering in strain-symmetrized PbSe/Pb 1-x Eu x Te quantum-dot superlattices , 1999 .

[132]  Andreas Hoffmann,et al.  Excited states and energy relaxation in stacked InAs/GaAs quantum dots , 1998 .

[133]  D. Gerthsen,et al.  Structural transformations and strain relaxation mechanisms of In0.6Ga0.4As islands grown by molecular beam epitaxy on GaAs(001) substrates , 1995 .

[134]  K. Kheng,et al.  Key parameters for the formation of II–VI self-assembled quantum dots , 2004 .

[135]  L. Freund,et al.  A critical thickness condition for triangular strained quantum wires grown in V-grooves on a patterned substrate , 1996 .

[136]  P. Petroff,et al.  LATERAL ORDERING OF QUANTUM DOTS BY PERIODIC SUBSURFACE STRESSORS , 1999 .

[137]  Kevin H. Chang,et al.  Characteristics of dislocations at strained heteroepitaxial InGaAs/GaAs interfaces , 1989 .

[138]  Chongmin Wang,et al.  Helical Crystalline SiC/SiO2 Core−Shell Nanowires , 2002 .

[139]  J. Willis,et al.  Mechanical stability and electronic properties of buried strained quantum wire arrays , 1995 .

[140]  Chun Lu,et al.  Effect of elastic anisotropy on the elastic fields and vertical alignment of quantum dots , 2003 .

[141]  W. H. Weinberg,et al.  Kinetics of strain relaxation through misfit dislocation formation in InAs/GaAs(111)A heteroepitaxy , 1999 .

[142]  Vitaly A. Shchukin,et al.  Self-assembled quantum dots: crossover from kinetically controlled to thermodynamically limited growth. , 2001, Physical review letters.

[143]  S. Wang Energy of an array of dislocations in a strained epitaxial layer deposited on a finite substrate , 2000 .

[144]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[145]  P. Sutter,et al.  Oblique stacking of three-dimensional dome islands in Ge/Si multilayers , 2001 .

[146]  N. Ledentsov,et al.  Vertical correlations and anticorrelations in multisheet arrays of two-dimensional islands , 1998 .

[147]  Huajian Gao,et al.  A twinned wedge in a Si-Ge epitaxial film: Twofold Σ = 9 twinning , 1997 .

[148]  J. Dundurs,et al.  Circular prismatic dislocation loop in a two-phase material , 1972 .

[149]  Z. Suo,et al.  Buckling suppression of SiGe islands on compliant substrates , 2003 .

[150]  Kang L. Wang,et al.  Effective compliant substrate for low-dislocation relaxed SiGe growth , 2001, Applied Physics Letters.

[151]  R. Tromp,et al.  Microstructure and strain relief of Ge films grown layer by layer on Si(001). , 1990, Physical review. B, Condensed matter.

[152]  K. Yamaguchi,et al.  One-Dimensional InAs Quantum-Dot Chains Grown on Strain-Controlled GaAs/InGaAs Buffer Layer by Molecular Beam Epitaxy , 2002 .

[153]  Mayank T. Bulsara,et al.  Relaxed template for fabricating regularly distributed quantum dot arrays , 1997 .

[154]  Bean,et al.  Stress-induced self-organization of nanoscale structures in SiGe/Si multilayer films. , 1996, Physical review. B, Condensed matter.

[155]  Chun Lu,et al.  Three-dimensional finite-element simulations of the self-organized growth of quantum dot superlattices , 2003 .

[156]  N. Ledentsov,et al.  Quantum dot heterostructures: Fabrication, properties, lasers (Review) , 1998 .

[157]  A. Larsen,et al.  Nanoscale Structuring by Misfit Dislocations in Si 1 − x Ge x / S i Epitaxial Systems , 1997 .

[158]  J. Zou,et al.  Dislocation-induced changes in quantum dots: Step alignment and radiative emission , 1999 .

[159]  John L. Freeouf,et al.  Atomic layer deposition of ZnSe/CdSe superlattice nanowires , 2002 .

[160]  J. Sturm,et al.  Tunable uniaxial vs biaxial in-plane strain using compliant substrates , 2005 .

[161]  W. H. Weinberg,et al.  Strain relaxation and interfacial stability in III–V semiconductor strained-layer heteroepitaxy: atomistic and continuum modeling and comparisons with experiments , 2002 .

[162]  L. B. Freund,et al.  A critical thickness condition for a strained compliant substrate/epitaxial film system , 1996 .

[163]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[164]  Felix Ejeckam,et al.  Growth of InGaAs multi-quantum wells at 1.3 μm wavelength on GaAs compliant substrates , 1998 .

[165]  I. Ovid’ko Misfit disclinations at crystal/crystal and crystal/glass interfaces , 1999 .

[166]  Ilya A. Ovid'ko,et al.  Plastic Deformation in Nanocrystalline Materials , 2004 .

[167]  M. Gutkin,et al.  Misfit dislocations in a thin two-phase heteroepitaxial plate , 1992 .

[168]  T. Wagner,et al.  Coherent to incoherent transition in mismatched interfaces , 1998 .

[169]  Gerhard Abstreiter,et al.  Two-dimensional ordering of self-assembled Ge islands on vicinal Si(001) surfaces with regular ripples , 1998 .

[170]  Harris,et al.  Vertically aligned and electronically coupled growth induced InAs islands in GaAs. , 1996, Physical review letters.

[171]  Christian Teichert,et al.  Self-organization of nanostructures in semiconductor heteroepitaxy , 2002 .

[172]  W. Doolittle,et al.  The status and promise of compliant substrate technology , 2000 .

[173]  M. Gutkin,et al.  Straight Edge Dislocation in a Thin Two‐Phase Plate I. Elastic Stress Fields , 1991 .

[174]  W. H. Weinberg,et al.  Theoretical study of the energetics, strain fields, and semicoherent interface structures in layer-by-layer semiconductor heteroepitaxy , 1999 .

[175]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[176]  Sander,et al.  Effect of strain on surface morphology in highly strained InGaAs films. , 1991, Physical review letters.

[177]  W. Pompe,et al.  Threading dislocation reduction in strained layers , 1999 .

[178]  M. Nishioka,et al.  Fabrication of InGaAs Strained Quantum Wire Structures Using Selective-Area Metal-Organic Chemical Vapor Deposition Growth , 1993 .

[179]  M. Lagally,et al.  Self-organization in growth of quantum dot superlattices. , 1996, Physical review letters.

[180]  P. Specht,et al.  Structural and optical properties of vertically aligned InP quantum dots , 1997 .

[181]  J. Eymery,et al.  Grazing incidence x-ray scattering investigation of Si surface patterned with buried dislocation networks , 2003 .

[182]  Holy,et al.  Self-organized growth of three- dimensional quantum-Dot crystals with fcc-like stacking and a tunable lattice constant , 1998, Science.

[183]  Reuter,et al.  Cyclic growth of strain-relaxed islands. , 1994, Physical review letters.

[184]  C. K. Inoki,et al.  SiGe relaxation on silicon-on-insulator substrates: An experimental and modeling study , 2003 .