On Burkholderiales order microorganisms and cystic fibrosis in Russia

[1]  O. Voronina,et al.  Features of the treatment of the cystic fibrosis patient with mixed microbial respiratory infection, including Pandoraea Pnomenusa , 2019, Russian Pediatric Journal.

[2]  A. Chuchalin,et al.  125 Airways bacterial community composition in assessing the results of antibacterial therapy , 2017 .

[3]  F. Martinez,et al.  The Microbiome and the Respiratory Tract. , 2016, Annual review of physiology.

[4]  Thomas Nussbaumer,et al.  EffectiveDB—updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems , 2015, Nucleic Acids Res..

[5]  А. Г. Чучалин,et al.  Разнообразие и опасность Achromobacter spp., поражающих дыхательные пути больных муковисцидозом , 2015 .

[6]  A. Chuchalin,et al.  The Variability of the Order Burkholderiales Representatives in the Healthcare Units , 2015, BioMed research international.

[7]  J. Marchesi,et al.  Rapid Detection of Emerging Pathogens and Loss of Microbial Diversity Associated with Severe Lung Disease in Cystic Fibrosis , 2015, Journal of Clinical Microbiology.

[8]  R. Süssmuth,et al.  Total synthesis of albicidin: a lead structure from Xanthomonas albilineans for potent antibacterial gyrase inhibitors. , 2015, Angewandte Chemie.

[9]  S. Yooseph,et al.  Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle , 2014, Proceedings of the National Academy of Sciences.

[10]  Huaiyu Mi,et al.  The InterPro protein families database: the classification resource after 15 years , 2014, Nucleic Acids Res..

[11]  E. Mahenthiralingam Emerging cystic fibrosis pathogens and the microbiome. , 2014, Paediatric respiratory reviews.

[12]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[13]  A. Chuchalin,et al.  [The express diagnostic of microorganisms affecting respiratory tract of patients with mucoviscidosis]. , 2013, Klinicheskaia laboratornaia diagnostika.

[14]  S. Sørensen,et al.  Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes , 2013, PloS one.

[15]  A. Chuchalin,et al.  Characterization of genotypes for Burkholderia cepacia complex strains isolated from patients in hospitals of the Russian federation , 2013, Molecular Genetics, Microbiology and Virology.

[16]  M. Almuzara,et al.  OXA-258 from Achromobacter ruhlandii: a Species-Specific Marker , 2013, Journal of Clinical Microbiology.

[17]  C. Neuwirth,et al.  Innate Aminoglycoside Resistance of Achromobacter xylosoxidans Is Due to AxyXY-OprZ, an RND-Type Multidrug Efflux Pump , 2012, Antimicrobial Agents and Chemotherapy.

[18]  Jason W. Moore,et al.  Serial Analysis of the Gut and Respiratory Microbiome in Cystic Fibrosis in Infancy: Interaction between Intestinal and Respiratory Tracts and Impact of Nutritional Exposures , 2012, mBio.

[19]  S. Dowd,et al.  Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota , 2012, Proceedings of the National Academy of Sciences.

[20]  P. Vandamme,et al.  A Multilocus Sequence Typing Scheme Implies Population Structure and Reveals Several Putative Novel Achromobacter Species , 2012, Journal of Clinical Microbiology.

[21]  S. Stanojevic,et al.  Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations , 2012, European Respiratory Journal.

[22]  Mikala Wang,et al.  Multilocus Sequence Analysis of Isolates of Achromobacter from Patients with Cystic Fibrosis Reveals Infecting Species Other than Achromobacter xylosoxidans , 2012, Journal of Clinical Microbiology.

[23]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[24]  R. Albano,et al.  Achromobacter xylosoxidans: Characterization of Strains in Brazilian Cystic Fibrosis Patients , 2011, Journal of Clinical Microbiology.

[25]  C. Llanes,et al.  First Description of an RND-Type Multidrug Efflux Pump in Achromobacter xylosoxidans, AxyABM , 2011, Antimicrobial Agents and Chemotherapy.

[26]  David S. Wishart,et al.  PHAST: A Fast Phage Search Tool , 2011, Nucleic Acids Res..

[27]  Martin Ester,et al.  PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes , 2010, Bioinform..

[28]  Eoin L. Brodie,et al.  Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. , 2010, Environmental microbiology.

[29]  J. Lipuma The Changing Microbial Epidemiology in Cystic Fibrosis , 2010, Clinical Microbiology Reviews.

[30]  G. Jacoby,et al.  Updated Functional Classification of β-Lactamases , 2009, Antimicrobial Agents and Chemotherapy.

[31]  D. Kwon,et al.  Alterations in Two-Component Regulatory Systems of phoPQ and pmrAB Are Associated with Polymyxin B Resistance in Clinical Isolates of Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[32]  P. Nordmann,et al.  Diversity, Epidemiology, and Genetics of Class D β-Lactamases , 2009, Antimicrobial Agents and Chemotherapy.

[33]  J. Lipuma,et al.  Expanded Multilocus Sequence Typing for Burkholderia Species , 2009, Journal of Clinical Microbiology.

[34]  H. Nikaido,et al.  Mechanisms of RND multidrug efflux pumps. , 2009, Biochimica et biophysica acta.

[35]  Eduardo P C Rocha,et al.  The Genome of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients , 2008, Journal of bacteriology.

[36]  K. Ruckdeschel,et al.  Crosstalk of signalling processes of innate immunity with Yersinia Yop effector functions. , 2008, Immunobiology.

[37]  P. Nordmann,et al.  Characterization of a Naturally Occurring Class D β-Lactamase from Achromobacter xylosoxidans , 2008, Antimicrobial Agents and Chemotherapy.

[38]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[39]  G. Manina,et al.  Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome , 2006, BMC Microbiology.

[40]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[41]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[42]  Paul Troisfontaines,et al.  Type III secretion: more systems than you think. , 2005, Physiology.

[43]  Joanna B. Goldberg,et al.  The multifarious, multireplicon Burkholderia cepacia complex , 2005, Nature Reviews Microbiology.

[44]  A. Abe,et al.  The Type III Secreted Protein BopD in Bordetella bronchiseptica Is Complexed with BopB for Pore Formation on the Host Plasma Membrane , 2004, Journal of bacteriology.

[45]  N. Blom,et al.  Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence , 2004, Proteomics.

[46]  C. Hart,et al.  Bacterial Diversity in Cases of Lung Infection in Cystic Fibrosis Patients: 16S Ribosomal DNA (rDNA) Length Heterogeneity PCR and 16S rDNA Terminal Restriction Fragment Length Polymorphism Profiling , 2003, Journal of Clinical Microbiology.

[47]  Richard A. Moore,et al.  Burkholderia pseudomallei Class A β-Lactamase Mutations That Confer Selective Resistance against Ceftazidime or Clavulanic Acid Inhibition , 2003, Antimicrobial Agents and Chemotherapy.

[48]  J. Frère,et al.  Substrate-activated Zinc Binding of Metallo-β-lactamases , 2002, The Journal of Biological Chemistry.

[49]  Qijing Zhang,et al.  CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni , 2002, Antimicrobial Agents and Chemotherapy.

[50]  K. Wilson Preparation of Genomic DNA from Bacteria , 2001, Current protocols in molecular biology.

[51]  C. Locht,et al.  Characterization of the type III secretion locus of Bordetella pertussis. , 2001, International journal of medical microbiology : IJMM.

[52]  M. Putman,et al.  Molecular Properties of Bacterial Multidrug Transporters , 2000, Microbiology and Molecular Biology Reviews.

[53]  Todd Richmond,et al.  Phylogenetic classification of proteins encoded in complete genomes , 2000, Genome Biology.

[54]  Jeff F. Miller,et al.  Modulation of host immune responses, induction of apoptosis and inhibition of NF‐κB activation by the Bordetella type III secretion system , 2000, Molecular microbiology.

[55]  J. Emerson,et al.  Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis , 1999, Pediatric pulmonology.

[56]  H. Leblebicioglu,et al.  Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study , 1997, Antimicrobial agents and chemotherapy.

[57]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[58]  M. Corey,et al.  Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. , 1984, The Journal of pediatrics.

[59]  I. Karunasagar,et al.  Bioinformatics based analysis of Type III secretion system effector protein of Vibrio vulnificus , 2010 .

[60]  J. Frère,et al.  Substrate-activated zinc binding of metallo-beta -lactamases: physiological importance of mononuclear enzymes. , 2002, The Journal of biological chemistry.

[61]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..