Extreme ultraviolet spectroscopy of low-Z ion plasmas for fusion applications.

The study of impurities is a key component of magnetic fusion research as it is directly related to plasma properties and steady-state operation. Two of the most important low-Z impurities are carbon and oxygen. The appropriate method of diagnosing these ions in plasmas is extreme ultraviolet (EUV) spectroscopy. In this work the results of two different sets of experiments are considered, and the spectra in a spectral region from 40 to 300 A are analyzed. The first set of experiments was carried out at the Sustained Spheromak Physics Experiment at LLNL, where EUV spectra of oxygen ions were recorded. The second set of experiments was performed at the compact laser-plasma x-ray/EUV facility "Sparky" at UNR. In particular, Mylar and Teflon slabs were used as targets to produce carbon, oxygen, and fluorine ions of different ionization stages. Nonlocal thermodynamic equilibrium kinetic models of O, F, and C were applied to identify the most diagnostically important spectral features of low-Z ions between 40 to 300 A and to provide plasma parameters for both sets of experiments.