Geometric principles of second messenger dynamics in dendritic spines

Dendritic spines are small, bulbous protrusions along dendrites in neurons and play a critical role in synaptic transmission. Dendritic spines come in a variety of shapes that depend on their developmental state. Additionally, roughly 14~19% of mature spines have a specialized endoplasmic reticulum called the spine apparatus. How do the shape of a postsynaptic spine and its internal organization affect the spatiotemporal dynamics of short timescale signaling? This question is central for understanding the beginnings of synaptic transmission, learning, and memory formation. In this work, we used mathematical modeling using reaction-diffusion equations in idealized geometries (ellipsoids and spheres) to characterize the effect of spine and spine apparatus geometries on the spatio-temporal dynamics of second messengers. Our analyses and simulations showed that in the short timescale, spine size and shape coupled with the spine apparatus geometries govern the spatiotemporal chemical dynamics of second messengers within the cell. We showed that the curvature of the geometries gives rise to pseudoharmonic functions, which predict the locations of maximum and minimum concentrations. Furthermore, we showed that the lifetime of the chemical gradient can be fine-tuned by localization of fluxes on the spine head and varying the relative curvatures and distances between the spine apparatus and the spine head. Thus, we identified some of the key geometric determinants of how spine head and spine apparatus may regulate the short timescale chemical dynamics of small molecules.

[1]  J. Mellor,et al.  Frontiers in Synaptic Neuroscience Synaptic Neuroscience , 2022 .

[2]  Colin W. Taylor,et al.  IP3 receptors: Take four IP3 to open , 2016, Science Signaling.

[3]  D Holcman,et al.  Calcium dynamics in dendritic spines and spine motility. , 2004, Biophysical journal.

[4]  F. Piras,et al.  The “addicted” spine , 2014, Front. Neuroanat..

[5]  V. Rokhlin,et al.  Prolate spheroidal wavefunctions, quadrature and interpolation , 2001 .

[6]  B N Kholodenko,et al.  Spatial gradients of cellular phospho‐proteins , 1999, FEBS letters.

[7]  T. Oertner,et al.  Calcium regulation of actin dynamics in dendritic spines. , 2005, Cell calcium.

[8]  Richard Haberman,et al.  Applied Partial Differential Equations with Fourier Series and Boundary Value Problems , 2012 .

[9]  J. Bourne,et al.  Do thin spines learn to be mushroom spines that remember? , 2007, Current Opinion in Neurobiology.

[10]  C. Gipson,et al.  Structural and functional plasticity of dendritic spines – root or result of behavior? , 2017, Genes, brain, and behavior.

[11]  Sho Yagishita,et al.  State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines , 2016, Scientific Reports.

[12]  G. Stiny Shape , 1999 .

[13]  R. Goody,et al.  The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. , 2011, Biochemistry.

[14]  M. Rubinstein,et al.  Mobility of Nonsticky Nanoparticles in Polymer Liquids. , 2011, Macromolecules.

[15]  S. R. Cajal,et al.  Estructura de los centros nerviosos de las Aves , 1888 .

[16]  P. Rangamani,et al.  Cell shape regulates subcellular organelle location to control early Ca2+ signal dynamics in vascular smooth muscle cells , 2018, Scientific Reports.

[17]  Jonas Korlach,et al.  Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer , 2008, Proceedings of the National Academy of Sciences.

[18]  Kelly,et al.  Spheroidal eigenfunctions of the tidal equation. , 1994, Physical review letters.

[19]  M. Frotscher,et al.  Fine structure of synapses on dendritic spines , 2014, Front. Neuroanat..

[20]  Ravi Iyengar,et al.  Decoding Information in Cell Shape , 2013, Cell.

[21]  Morten Willatzen,et al.  Prolate Spheroidal Coordinates , 2011 .

[22]  Daniel N. Wilson,et al.  The structure and function of the eukaryotic ribosome. , 2012, Cold Spring Harbor perspectives in biology.

[23]  T. Sejnowski,et al.  Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium , 2018, bioRxiv.

[24]  Michael J Higley,et al.  Calcium Signaling in Dendritic Spines , 2022 .

[25]  Subhadip Basu,et al.  Quantitative 3-D morphometric analysis of individual dendritic spines , 2018, Scientific Reports.

[26]  R. Benavides-Piccione,et al.  Dendritic Spines: From Shape to Function , 2016 .

[27]  G. V. Shivashankar,et al.  Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility , 2013, Proceedings of the National Academy of Sciences.

[28]  F. M. Arscott,et al.  HILL'S EQUATION , 1964 .

[29]  W. Huck,et al.  3D microniches reveal the importance of cell size and shape , 2017, Nature Communications.

[30]  J. Kotaleski,et al.  Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches , 2010, Nature Reviews Neuroscience.

[31]  T. Sejnowski,et al.  Computational reconstitution of spine calcium transients from individual proteins , 2015, Front. Synaptic Neurosci..

[32]  M. Segal,et al.  Endoplasmic reticulum calcium stores in dendritic spines , 2014, Front. Neuroanat..

[33]  Bernardo L Sabatini,et al.  Ca2+ signaling in dendritic spines , 2007, Current Opinion in Neurobiology.

[34]  K. Svoboda,et al.  Ca2+ signaling in dendritic spines , 2001, Current Opinion in Neurobiology.

[35]  Stephen Wilkerson,et al.  Applied Partial Differential Equations with Fourier Series and Boundary Value Problems , 2012 .

[36]  Annie Z. Tremp Malaria: Plasmodium develops in lymph nodes , 2006, Nature Reviews Microbiology.

[37]  Andreas Vlachos,et al.  A role for the spine apparatus in LTP and spatial learning , 2008, Behavioural Brain Research.

[38]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[39]  Kristen M Harris,et al.  Ultrastructure of synapses in the mammalian brain. , 2012, Cold Spring Harbor perspectives in biology.

[40]  Kyle L Ellefsen,et al.  Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action , 2016, Science Signaling.

[41]  C. Stevens,et al.  Calcium permeability of the N-methyl-D-aspartate receptor channel in hippocampal neurons in culture. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  F. Arscott,et al.  Curvilinear Co-ordinate Systems in which the Helmholtz Equation Separates , 1981 .

[43]  E. G. Gray,et al.  Electron Microscopy of Synaptic Contacts on Dendrite Spines of the Cerebral Cortex , 1959, Nature.

[44]  C. Torre Spherical Coordinates , 2019, Climate Mathematics.

[45]  Rafael Yuste,et al.  Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies , 2007, Front. Neurosci..

[46]  Dariusz M Plewczynski,et al.  Three-dimensional Epigenome Statistical Model: Genome-wide Chromatin Looping Prediction , 2018, Scientific Reports.

[47]  J. Bourne,et al.  Balancing structure and function at hippocampal dendritic spines. , 2008, Annual review of neuroscience.

[48]  S. Halpain,et al.  Computational Modeling Reveals Frequency Modulation of Calcium-cAMP/PKA Pathway in Dendritic Spines , 2019, bioRxiv.

[49]  B. Sabatini,et al.  Calcium Signaling in Dendrites and Spines: Practical and Functional Considerations , 2008, Neuron.

[50]  Harald F Hess,et al.  Contacts between the endoplasmic reticulum and other membranes in neurons , 2017, Proceedings of the National Academy of Sciences.

[51]  R. Benavides-Piccione,et al.  Editorial: Dendritic spines: from shape to function† , 2015, Front. Neuroanat..

[52]  Samuel A. Ramirez,et al.  Dendritic spine geometry can localize GTPase signaling in neurons , 2015, Molecular biology of the cell.

[53]  G. Oster,et al.  Paradoxical signaling regulates structural plasticity in dendritic spines , 2016, Proceedings of the National Academy of Sciences.

[54]  J. Meixner,et al.  Mathieu functions and spheroidal functions and their mathematical foundations, further studies , 1980 .

[55]  Padmini Rangamani,et al.  Geometric control of frequency modulation of cAMP oscillations due to Ca2+-bursts in dendritic spines , 2019, bioRxiv.

[56]  F. Arscott,et al.  Periodic Differential Equations: An Introduction to Mathieu, Lamé, and Allied Functions , 2013 .

[57]  L. Cooper,et al.  A unified model of NMDA receptor-dependent bidirectional synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Armin Biess,et al.  Barriers to Diffusion in Dendrites and Estimation of Calcium Spread Following Synaptic Inputs , 2011, PLoS Comput. Biol..

[59]  N. Batada,et al.  Spines and neurite branches function as geometric attractors that enhance protein kinase C action , 2005, The Journal of cell biology.

[60]  Colleen E. Clancy,et al.  Mechanisms Restricting Diffusion of Intracellular cAMP , 2016, Scientific Reports.

[61]  M. Frotscher,et al.  Synaptopodin Regulates Spine Plasticity: Mediation by Calcium Stores , 2014, The Journal of Neuroscience.

[62]  T. Kuner,et al.  Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition , 2016, Scientific Reports.

[63]  J. Fiala,et al.  Endosomal Compartments Serve Multiple Hippocampal Dendritic Spines from a Widespread Rather Than a Local Store of Recycling Membrane , 2002, The Journal of Neuroscience.

[64]  P. Jedlicka,et al.  Understanding the role of synaptopodin and the spine apparatus in Hebbian synaptic plasticity – New perspectives and the need for computational modeling , 2017, Neurobiology of Learning and Memory.

[65]  Buffer mobility and the regulation of neuronal calcium domains , 2015, Frontiers in cellular neuroscience.

[66]  K M Harris,et al.  Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines , 2000, Hippocampus.

[67]  Paul Herzmark,et al.  Morphology matters in immune cell chemotaxis: membrane asymmetry affects amplification , 2006, Physical biology.

[68]  B. Sabatini,et al.  SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines , 2005, Nature Neuroscience.

[69]  U. Bhalla,et al.  Emergent properties of networks of biological signaling pathways. , 1999, Science.

[70]  M. Frotscher,et al.  Plasticity of synaptopodin and the spine apparatus organelle in the rat fascia dentata following entorhinal cortex lesion , 2006, The Journal of comparative neurology.

[71]  D. Odde,et al.  Potential for Control of Signaling Pathways via Cell Size and Shape , 2006, Current Biology.

[72]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[73]  Remy Kusters,et al.  Barriers in the brain: resolving dendritic spine morphology and compartmentalization , 2014, Front. Neuroanat..

[74]  Erwin Frey,et al.  Geometry-induced protein pattern formation , 2016, Proceedings of the National Academy of Sciences.

[75]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[76]  D. Webb,et al.  Dendritic spine morphology and dynamics in health and disease , 2015 .

[77]  R. Iyengar,et al.  Curvature regulates subcellular organelle location to control intracellular signal propagation , 2017 .

[78]  N. Ip,et al.  Structural plasticity of dendritic spines: the underlying mechanisms and its dysregulation in brain disorders. , 2013, Biochimica et biophysica acta.

[79]  Yoshihisa Kubota,et al.  The impacts of geometry and binding on CaMKII diffusion and retention in dendritic spines , 2011, Journal of Computational Neuroscience.

[80]  Mark Ellisman,et al.  Synapse formation on neurons born in the adult hippocampus , 2007, Nature Neuroscience.

[81]  M. Frotscher,et al.  Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Ryohei Yasuda,et al.  Biochemical Computation for Spine Structural Plasticity , 2015, Neuron.

[83]  Paul De Koninck,et al.  Dendritic spine viscoelasticity and soft-glassy nature: balancing dynamic remodeling with structural stability. , 2007, Biophysical journal.

[84]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[85]  Hyun Jae Pi,et al.  Coupled Phosphatase and Kinase Switches Produce the Tristability Required for Long-Term Potentiation and Long-Term Depression , 2008, The Journal of Neuroscience.

[86]  Boris N. Kholodenko,et al.  Signalling ballet in space and time , 2010, Nature Reviews Molecular Cell Biology.

[87]  Mark H Ellisman,et al.  Ultrastructure of a Somatic Spine Mat for Nicotinic Signaling in Neurons , 2002, The Journal of Neuroscience.

[88]  Micha E. Spira,et al.  Low Mobility of the Ca2+ Buffers in Axons of Cultured Aplysia Neurons , 1997, Neuron.

[89]  R. Yasuda Biophysics of Biochemical Signaling in Dendritic Spines: Implications in Synaptic Plasticity. , 2017, Biophysical journal.

[90]  M E Martone,et al.  Selective localization of high concentrations of F‐actin in subpopulations of dendritic spines in rat central nervous system: A three‐dimensional electron microscopic study , 2001, The Journal of comparative neurology.

[91]  D. Muller,et al.  Structural plasticity: mechanisms and contribution to developmental psychiatric disorders , 2014, Front. Neuroanat..

[92]  Colleen E. Clancy,et al.  A Computational Modeling and Simulation Approach to Investigate Mechanisms of Subcellular cAMP Compartmentation , 2016, PLoS Comput. Biol..

[93]  U. Bhalla Synaptic input sequence discrimination on behavioral timescales mediated by reaction-diffusion chemistry in dendrites , 2017, eLife.

[94]  Tullio Pozzan,et al.  Discrete Microdomains with High Concentration of cAMP in Stimulated Rat Neonatal Cardiac Myocytes , 2002, Science.