MnO2-based nanostructures for high-performance supercapacitors

MnO2-based materials have been intensively investigated for use in pseudocapacitors due to their high theoretical specific capacitance, good chemical and thermal stability, natural abundance, environmental benignity and low cost. In this review, several main factors that affect the electrochemical properties of MnO2-based electrodes are presented. Various strategic design and synthetic methods of MnO2-based electrode materials for enhanced electrochemical performance are highlighted and summarized. Finally, the challenges and future directions toward the development of MnO2-based nanostructured electrode materials for high performance supercapacitors (SCs) are discussed.

[1]  Haibo Guo,et al.  Influence of nitric acid acitivation on structure and capacitive performances of ordered mesoporous carbon , 2015 .

[2]  C. Zhi,et al.  Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors. , 2015, ACS applied materials & interfaces.

[3]  K. Zaghib,et al.  Polypyrrole-covered MnO2 as electrode material for supercapacitor , 2013 .

[4]  D. Xue,et al.  Crystallization design of MnO2 towards better supercapacitance , 2012 .

[5]  Zhanhu Guo,et al.  Anthraquinone on Porous Carbon Nanotubes with Improved Supercapacitor Performance , 2014 .

[6]  Ray H. Baughman,et al.  Stretchable, Weavable Coiled Carbon Nanotube/MnO2/Polymer Fiber Solid-State Supercapacitors , 2015, Scientific Reports.

[7]  Zhennan Gu,et al.  Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. , 2008, Nano letters.

[8]  Hao Jiang,et al.  Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors , 2012 .

[9]  Zhenxing Zhang,et al.  Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. , 2013, ACS nano.

[10]  Yong Zhao,et al.  MnO2 nanosheets grown on the ZnO-nanorod-modified carbon fibers for supercapacitor electrode materials , 2014 .

[11]  Chunzhong Li,et al.  High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures. , 2012, Chemical communications.

[12]  Wenjie Mai,et al.  Flexible supercapacitors based on carbon nanotube/MnO2 nanotube hybrid porous films for wearable electronic devices , 2014 .

[13]  Shuhong Yu,et al.  Bacterial‐Cellulose‐Derived Carbon Nanofiber@MnO2 and Nitrogen‐Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density , 2013, Advanced materials.

[14]  Enric Bertran,et al.  Optimization of MnO 2/vertically aligned carbon nanotube composite for supercapacitor application , 2011 .

[15]  Lei Jin,et al.  Titanium Containing γ‐MnO2 (TM) Hollow Spheres: One‐Step Synthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions , 2010 .

[16]  Lili Zhang,et al.  Graphene-based materials as supercapacitor electrodes , 2010 .

[17]  Yufeng Zhao,et al.  Electrochemical performance of graphitized carbide-derived-carbon with hierarchical micro- and meso-pores in alkaline electrolyte , 2014 .

[18]  M. Roberts,et al.  Redox Solute Doped Polypyrrole for High-Charge Capacity Polymer Electrodes , 2014 .

[19]  M. Huang,et al.  One-step hydrothermal synthesis of hierarchical MnO2-coated CuO flower-like nanostructures with enhanced electrochemical properties for supercapacitor , 2013 .

[20]  Xiong Zhang,et al.  Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method , 2009 .

[21]  F. Favier,et al.  Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. , 2008, ACS applied materials & interfaces.

[22]  Hongwei Ma,et al.  A cost-effective way to maintain metal-doped carbon xerogels and their applications on electric double-layer capacitors , 2012 .

[23]  Lin Yu,et al.  Ultra-long α-MnO2 nanowires: Control synthesis and its absorption activity , 2014 .

[24]  C. Westgate,et al.  All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte , 2014 .

[25]  Xianmao Lu,et al.  Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. , 2013, Nanoscale.

[26]  W. Liu,et al.  High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. , 2015, Small.

[27]  F. Kang,et al.  Preparation of the cactus-like porous manganese oxide assisted with surfactant sodium dodecyl sulfate for supercapacitors , 2015 .

[28]  Yongsong Luo,et al.  Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors , 2015 .

[29]  Dezhi Kong,et al.  Three‐Dimensional Co3O4@MnO2 Hierarchical Nanoneedle Arrays: Morphology Control and Electrochemical Energy Storage , 2014 .

[30]  G. Lu,et al.  Layer-by-layer assembly and electrochemical properties of sandwiched film of manganese oxide nanosheet and carbon nanotube , 2009 .

[31]  Jianfeng Chen,et al.  Ultrasound–Microwave-Assisted Synthesis of MnO2 Supercapacitor Electrode Materials , 2014 .

[32]  Y. Tong,et al.  3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. , 2013, Nanoscale.

[33]  N. Manyala,et al.  Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor , 2013 .

[34]  Y. Tong,et al.  Design and synthesis of MnO₂/Mn/MnO₂ sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. , 2012, Nano letters.

[35]  Zhiyong Fan,et al.  Highly flexible and transferable supercapacitors with ordered three-dimensional MnO2/Au/MnO2 nanospike arrays , 2015 .

[36]  Hee Jo Song,et al.  Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes , 2015, Nano Research.

[37]  B. Geng,et al.  Superior performance asymmetric supercapacitors based on ZnCo2O4@MnO2 core–shell electrode , 2015 .

[38]  S. Desu,et al.  Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor , 2008 .

[39]  Ran Liu,et al.  Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/Poly(3,4-ethylenedioxythiophene) nanowires. , 2011, ACS nano.

[40]  Biao Wang,et al.  One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications , 2015 .

[41]  C. Lin,et al.  Hybrid manganese oxide films for supercapacitor application prepared by sol-gel technique , 2009 .

[42]  Hua Zhang,et al.  Hierarchical TiO2 nanobelts@MnO2 ultrathin nanoflakes core–shell array electrode materials for supercapacitors , 2013 .

[43]  R. Penner,et al.  Mesoporous manganese oxide nanowires for high-capacity, high-rate, hybrid electrical energy storage. , 2011, ACS nano.

[44]  Xingzhong Zhao,et al.  Capture and release of cancer cells using electrospun etchable MnO2 nanofibers integrated in microchannels , 2015 .

[45]  S. Joo,et al.  Synthesis of Amourphous and Crystalline Hollow Manganese Oxide Nanotubes with Highly Porous Walls Using Carbon Nanotube Templates and Enhanced Catalytic Activity , 2014 .

[46]  Fei Li,et al.  Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes , 2015 .

[47]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[48]  Yong Lei,et al.  Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors , 2014 .

[49]  D. Ivey,et al.  Effect of electrodeposition conditions on the electrochemical capacitive behavior of synthesized man , 2011 .

[50]  Mingdeng Wei,et al.  Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application , 2014 .

[51]  C. Peng,et al.  Fabrication of Anodic‐Alumina Films with Custom‐Designed Arrays of Nanochannels , 2005 .

[52]  R. Che,et al.  One‐Step Fabrication of Ultrathin Porous Nickel Hydroxide‐Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance , 2013 .

[53]  Kaibing Xu,et al.  MnO2 Nanoflower Arrays with High Rate Capability for Flexible Supercapacitors , 2014 .

[54]  Zhou Shi,et al.  Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor , 2015 .

[55]  F. Favier,et al.  MnO2 as ink material for the fabrication of supercapacitor electrodes , 2015 .

[56]  F. Kang,et al.  Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials , 2012 .

[57]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[58]  Xiao‐Qing Yang,et al.  Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes , 2009 .

[59]  R. Ruoff,et al.  Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon , 2012 .

[60]  S. Maiti,et al.  Influence of imidazolium-based ionic liquid electrolytes on the performance of nano-structured MnO2 hollow spheres as electrochemical supercapacitor , 2015 .

[61]  Wei Lv,et al.  Porous MnO2 for use in a high performance supercapacitor: replication of a 3D graphene network as a reactive template. , 2013, Chemical communications.

[62]  Hua-rui Xu,et al.  MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor , 2012 .

[63]  Yang Yang,et al.  Atomic H-induced cutting and unzipping of single-walled carbon nanotube carpets with a teepee structure and their enhanced supercapacitor performance , 2015 .

[64]  Pengyi Tang,et al.  Step-by-step assembled poly(3,4-ethylenedioxythiophene)/manganese dioxide composite electrodes: Tuning the structure for high electrochemical performance , 2013 .

[65]  Lin Yu,et al.  Novel Synthesis of Birnessite-Type MnO2 Nanostructure for Water Treatment and Electrochemical Capacitor , 2013 .

[66]  X. Guo,et al.  Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors , 2014 .

[67]  Rujia Zou,et al.  Sponge-like NiCo2O4/MnO2 ultrathin nanoflakes for supercapacitor with high-rate performance and ultra-long cycle life , 2014 .

[68]  D. He,et al.  Hydrothermal Self-assembly of Manganese Dioxide/Manganese Carbonate/Reduced Graphene Oxide Aerogel for Asymmetric Supercapacitors , 2015 .

[69]  S. Suib,et al.  Systematic Control of Particle Size in Rapid Open-Vessel Microwave Synthesis of K-OMS-2 Nanofibers , 2008 .

[70]  Z. Wen,et al.  Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors , 2014 .

[71]  Yuxin Zhang,et al.  Rational Design of Porous MnO2 Tubular Arrays via Facile and Templated Method for High Performance Supercapacitors , 2015 .

[72]  Rujia Zou,et al.  MnO2 ultralong nanowires with better electrical conductivity and enhanced supercapacitor performances , 2012 .

[73]  Yuxin Zhang,et al.  Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes , 2015 .

[74]  M. Anderson,et al.  Novel electrode materials for electrochemical capacitors: Part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films , 2000 .

[75]  F. Kang,et al.  Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors , 2011 .

[76]  S. Suib,et al.  A Review of Porous Manganese Oxide Materials , 1998 .

[77]  X. Zhao,et al.  Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes , 2012 .

[78]  W. Jheng,et al.  Effect of iron particle addition on the pseudocapacitive performance of sol-gel derived manganese oxides film , 2012 .

[79]  Genqiang Zhang,et al.  Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. , 2013, Chemical communications.

[80]  Arumugam Manthiram,et al.  Nanostructured electrode materials for electrochemical energy storage and conversion , 2008 .

[81]  Hailiang Wang,et al.  Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. , 2013, Chemical Society reviews.

[82]  Mao-Sung Wu,et al.  Manganese Oxide Nanowires Grown on Ordered Macroporous Conductive Nickel Scaffold for High-Performance Supercapacitors , 2011 .

[83]  Wei Li,et al.  Synthesis of Co3O4/SnO2@MnO2 core–shell nanostructures for high-performance supercapacitors , 2015 .

[84]  M. El‐Kady,et al.  Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage , 2013, Nature Communications.

[85]  Jian Luo,et al.  Improvement of hydrothermally synthesized MnO2 electrodes on Ni foams via facile annealing for supercapacitor applications , 2014, Journal of Materials Science.

[86]  Roya Maboudian,et al.  Flexible micro-supercapacitors with high energy density from simple transfer of photoresist-derived porous carbon electrodes , 2014 .

[87]  Jun Wang,et al.  Manganese dioxide core–shell nanowires in situ grown on carbon spheres for supercapacitor application , 2014 .

[88]  H Zhao,et al.  An α-MnO2nanotube used as a novel catalyst in ozonation: performance and the mechanism , 2014 .

[89]  M. Anderson,et al.  Novel Electrode Materials for Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide , 2000 .

[90]  R. Penner,et al.  Lithographically Patterned Gold/Manganese Dioxide Core/Shell Nanowires for High Capacity, High Rate, and High Cyclability Hybrid Electrical Energy Storage , 2012 .

[91]  Dongyan Li,et al.  Synthesis of Hierarchical Hollow MnO2 Microspheres and Potential Application in Abatement of VOCs , 2013 .

[92]  I. Zhitomirsky,et al.  New colloidal route for electrostatic assembly of oxide nanoparticle – carbon nanotube composites , 2014 .

[93]  Yang Li,et al.  Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. , 2013, ACS nano.

[94]  M. Kundu,et al.  Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors , 2013 .

[95]  Cheng Yang,et al.  Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor , 2014 .

[96]  Li Lu,et al.  MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors , 2010 .

[97]  Y. Tong,et al.  Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[98]  Feiyu Kang,et al.  Recent progress on manganese dioxide based supercapacitors , 2010 .

[99]  Yat Li,et al.  Fabrication and Characteristics of Galvanostatic Electrodeposited MnO2 on Porous Nickel from Etched Aluminium , 2014 .

[100]  Goangseup Zi,et al.  High-density, stretchable, all-solid-state microsupercapacitor arrays. , 2014, ACS nano.

[101]  Tim Leshuk,et al.  Photocatalytic activity of hydrogenated TiO2. , 2013, ACS applied materials & interfaces.

[102]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[103]  Qingming Shen,et al.  The self-assembly of shape controlled functionalized graphene–MnO2 composites for application as supercapacitors , 2014 .

[104]  Hang Sun,et al.  One-Step Synthesis of Single-Layer MnO2 Nanosheets with Multi-Role Sodium Dodecyl Sulfate for High-Performance Pseudocapacitors. , 2015, Small.

[105]  D. D. Meng,et al.  Scalable high-power redox capacitors with aligned nanoforests of crystalline MnO₂ nanorods by high voltage electrophoretic deposition. , 2013, ACS nano.

[106]  K. Xiao,et al.  Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors , 2014 .

[107]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[108]  Xiaochen Dong,et al.  Binary metal oxide: advanced energy storage materials in supercapacitors , 2015 .

[109]  K. Lian,et al.  Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics , 2013 .

[110]  Pengyi Tang,et al.  High performance asymmetric supercapacitor based on MnO2 electrode in ionic liquid electrolyte , 2013 .

[111]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[112]  P. M. D. Wolff Interpretation of some γ‐MnO2 diffraction patterns , 1959 .

[113]  Ji Won Suk,et al.  Graphene-based actuators. , 2010, Small.

[114]  C. Julien,et al.  Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2 , 2011 .

[115]  Jinping Liu,et al.  High-voltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm , 2014, Nanotechnology.

[116]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[117]  Dingcai Wu,et al.  Preparation and electrochemical characterizations of MnO2-dispersed carbon aerogel as supercapacitor electrode material , 2009 .

[118]  Ying-Sheng Huang,et al.  Power loss and energy density of the asymmetric ultracapacitor loaded with molybdenum doped manganese oxide , 2012 .

[119]  F. Favier,et al.  In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors , 2011 .

[120]  W. Feng,et al.  Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors , 2012 .

[121]  D. Zhao,et al.  An Interface‐Induced Co‐Assembly Approach Towards Ordered Mesoporous Carbon/Graphene Aerogel for High‐Performance Supercapacitors , 2015 .

[122]  H. Hng,et al.  Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors. , 2012, ACS applied materials & interfaces.

[123]  Andreas Greiner,et al.  Electrospinning: a fascinating method for the preparation of ultrathin fibers. , 2007, Angewandte Chemie.

[124]  H. Munakata,et al.  Hydrothermal Synthesis of Manganese Dioxide Nanoparticles as Cathode Material for Rechargeable Batteries , 2013 .

[125]  Mao-Sung Wu Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition , 2005 .

[126]  S. Dou,et al.  Uncoupled surface spin induced exchange bias in α-MnO2 nanowires , 2014, Scientific Reports.

[127]  J. Eckert,et al.  Hierarchical Carbide‐Derived Carbon Foams with Advanced Mesostructure as a Versatile Electrochemical Energy‐Storage Material , 2014 .

[128]  Ran Liu,et al.  MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. , 2008, Journal of the American Chemical Society.

[129]  J. González,et al.  Transport properties of two finite armchair graphene nanoribbons , 2013, Nanoscale Research Letters.

[130]  Weijia Zhou,et al.  Flexible wire-like all-carbon supercapacitors based on porous core–shell carbon fibers , 2014 .

[131]  Eleanor I. Gillette,et al.  Self-limiting electrodeposition of hierarchical MnO₂ and M(OH)₂/MnO₂ nanofibril/nanowires: mechanism and supercapacitor properties. , 2013, ACS nano.

[132]  Y. Shao-horn,et al.  Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. , 2010, ACS nano.

[133]  Yuxin Zhang,et al.  Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors , 2014 .

[134]  Xin Wang,et al.  Controlled growth of nanostructured MnO2 on carbon nanotubes for high-performance electrochemical capacitors , 2015 .

[135]  Hongfeng Xu,et al.  One-step synthesis of mesoporous MnO2/carbon sphere composites for asymmetric electrochemical capacitors , 2015 .

[136]  Jian Zhu,et al.  Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors. , 2014, ACS applied materials & interfaces.

[137]  S. Ramaprabhu,et al.  Polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte , 2011 .

[138]  Andrew Cruden,et al.  Energy storage in electrochemical capacitors: designing functional materials to improve performance , 2010 .

[139]  Weiguo Song,et al.  Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. , 2011, Nanoscale.

[140]  Yuxin Zhang,et al.  One-pot synthesis of hierarchical MnO2-modified diatomites for electrochemical capacitor electrodes , 2014 .

[141]  Abdullah M. Asiri,et al.  Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors. , 2014, Ultrasonics sonochemistry.

[142]  Tianxi Liu,et al.  One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors. , 2014, Nanoscale.

[143]  Jiali Liu,et al.  A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode , 2009 .

[144]  Y. Tong,et al.  Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[145]  Zhixiang Wei,et al.  Conducting polymer nanowire arrays for high performance supercapacitors. , 2014, Small.

[146]  Mao-Sung Wu,et al.  Highly Regulated Electrodeposition of Needle-Like Manganese Oxide Nanofibers on Carbon Fiber Fabric for Electrochemical Capacitors , 2010 .

[147]  Rudolf Holze,et al.  Demonstrating the Highest Supercapacitive Performance of Branched MnO2 Nanorods Grown Directly on Flexible Substrates using Controlled Chemistry at Ambient Temperature , 2013 .

[148]  Jiaguo Yu,et al.  Hierarchically porous MnO2 microspheres with enhanced adsorption performance , 2013 .

[149]  Yuxin Zhang,et al.  Morphology and crystallinity-controlled synthesis of manganese cobalt oxide/manganese dioxides hierarchical nanostructures for high-performance supercapacitors , 2015 .

[150]  Li-zhen Wang,et al.  Polypyrrole/MnO2 composites and their enhanced electrochemical capacitance , 2012 .

[151]  T. Pal,et al.  Synthesis of superparamagnetic beta-MnO2 organosol: a photocatalyst for the oxidative phenol coupling reaction. , 2008, Inorganic chemistry.

[152]  Lei Zhang,et al.  Nickel, cobalt, and manganese oxide composite as an electrode material for electrochemical supercapacitors , 2013, Ionics.

[153]  Yi Xie,et al.  Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. , 2013, Nano letters.

[154]  Masa-aki Suzuki,et al.  MnO2/carbon nanowalls composite electrode for supercapacitor application , 2014 .

[155]  Jian Jiang,et al.  Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance , 2012 .

[156]  H. Fan,et al.  Electrodeposition of manganese dioxide film on activated carbon paper and its application in supercapacitors with high rate capability , 2014 .

[157]  Wei Lu,et al.  Aqueous manganese dioxide ink for paper-based capacitive energy storage devices. , 2015, Angewandte Chemie.

[158]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[159]  Kunfeng Chen,et al.  Crystallization of FeOOH via iron salts: an anion-chemoaffinity controlled hydrolysis toward high performance inorganic pseudocapacitor materials , 2015 .

[160]  Li-zhen Fan,et al.  Rational design of graphene/porous carbon aerogels for high-performance flexible all-solid-state supercapacitors , 2014 .

[161]  S. Suib,et al.  Crystalline mesoporous K(2-x)Mn₈O₁₆ and ε-MnO₂ by mild transformations of amorphous mesoporous manganese oxides and their enhanced redox properties. , 2014, ACS applied materials & interfaces.

[162]  John Wang,et al.  MnOx nanosheets for improved electrochemical performances through bilayer nano-architecting , 2015 .

[163]  Yongsheng Chen,et al.  An overview of the applications of graphene-based materials in supercapacitors. , 2012, Small.

[164]  Wei Xiong,et al.  Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes , 2014 .

[165]  Rujia Zou,et al.  Effect of temperature on the performance of ultrafine MnO2 nanobelt supercapacitors , 2014 .

[166]  Yuxin Zhang,et al.  Hierarchical NiO moss decorated diatomites via facile and templated method for high performance supercapacitors , 2014 .

[167]  R. Li,et al.  Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. , 2012, Journal of colloid and interface science.

[168]  Lin Yu,et al.  Well-ordered organic–inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance , 2013 .

[169]  S. Suib,et al.  Microwave-Assisted Hydrothermal Synthesis of α-MnO2: Lattice Expansion via Rapid Temperature Ramping and Framework Substitution , 2014 .

[170]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[171]  Yuming Cui,et al.  One-pot synthesis of α-Fe2O3 nanospheres by solvothermal method , 2013, Nanoscale Research Letters.

[172]  Qing Liu,et al.  Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors , 2014, Scientific Reports.

[173]  J. Holdren,et al.  Energy and Sustainability , 2007, Science.

[174]  G. Han,et al.  Rational design of hierarchically porous birnessite-type manganese dioxides nanosheets on different one-dimensional titania-based nanowires for high performance supercapacitors , 2014 .

[175]  R. Reddy,et al.  Sol–gel MnO2 as an electrode material for electrochemical capacitors , 2003 .

[176]  Xinyu Song,et al.  One-Step Preparation of Single-Crystalline β-MnO2 Nanotubes , 2005 .

[177]  B. Dunn,et al.  The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5 , 2012 .

[178]  M. Sawangphruk,et al.  Surfactant-assisted electrodeposition and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor electrodes , 2012, Journal of Solid State Electrochemistry.

[179]  S. Donne,et al.  Nucleation and growth of electrodeposited manganese dioxide for electrochemical capacitors , 2014 .

[180]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[181]  H. Naderi,et al.  Supercapacitive properties of nanostructured MnO2/exfoliated graphite synthesized by ultrasonic vibration , 2014 .

[182]  P. Ajayan,et al.  Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. , 2005, The journal of physical chemistry. B.

[183]  Charge Storage in Cation Incorporated α-MnO2 , 2014, 1406.6022.

[184]  G. Bidan,et al.  3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid , 2015, Scientific Reports.

[185]  Jun Jiang,et al.  Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. , 2013, Chemical Society reviews.

[186]  M. Niederberger,et al.  Microwave chemistry for inorganic nanomaterials synthesis. , 2010, Nanoscale.

[187]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[188]  F. Kang,et al.  A high-energy-density micro supercapacitor of asymmetric MnO2–carbon configuration by using micro-fabrication technologies , 2013 .

[189]  Yiju Li,et al.  Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors , 2015 .

[190]  J. Yi,et al.  Hybrid MnO2 film with agarose gel for enhancing the structural integrity of thin film supercapacitor electrodes. , 2013, ACS applied materials & interfaces.

[191]  Ashutosh K. Singh,et al.  High-Performance Pseudocapacitor Electrodes Based on α-Fe2O3/MnO2 Core–Shell Nanowire Heterostructure Arrays , 2013 .

[192]  Lei Zhao,et al.  A bird nest-like manganese dioxide and its application as electrode in supercapacitors , 2013 .

[193]  M. Zhang,et al.  Silica nanonetwork confined in nitrogen-doped ordered mesoporous carbon framework for high-performance lithium-ion battery anodes. , 2015, Nanoscale.

[194]  Li-zhen Fan,et al.  Engineering graphene aerogels with porous carbon of large surface area for flexible all-solid-state supercapacitors , 2015 .

[195]  M. Anouti,et al.  Eutectic mixture of Protic Ionic Liquids as an Electrolyte for Activated Carbon-Based Supercapacitors , 2015 .

[196]  Hong Gao,et al.  Quantitative investigation on the effect of hydrogenation on the performance of MnO2/H-TiO2 composite electrodes for supercapacitors , 2015 .

[197]  Xiaomiao Feng,et al.  The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors , 2013 .

[198]  J. Nam,et al.  Morphology and composition control of manganese oxide by the pulse reverse electrodeposition technique for high performance supercapacitors , 2013 .

[199]  Gang Wang,et al.  An ionic liquid template approach to graphene–carbon xerogel composites for supercapacitors with enhanced performance , 2014 .

[200]  M. Antonietti,et al.  Nitrogen‐Containing Hydrothermal Carbons with Superior Performance in Supercapacitors , 2010, Advanced materials.

[201]  Xin Wang,et al.  Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach. , 2011, Nanoscale.

[202]  N. Manyala,et al.  Manganese oxide/graphene oxide composites for high-energy aqueous asymmetric electrochemical capacitors , 2013 .

[203]  Y. Miao,et al.  High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. , 2013, ACS applied materials & interfaces.

[204]  D. Bhattacharyya,et al.  Physiochemical Investigation of Shape-Designed MnO2 Nanostructures and Their Influence on Oxygen Reduction Reaction Activity in Alkaline Solution , 2015 .

[205]  Zhenyu Wang,et al.  Kirkendall Effect Induced One-Step Fabrication of Tubular Ag/MnOx Nanocomposites for Supercapacitor Application , 2014 .

[206]  Mao-Sung Wu,et al.  Tubular graphene nanoribbons with attached manganese oxide nanoparticles for use as electrodes in high-performance supercapacitors , 2013 .

[207]  Li Lu,et al.  Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties , 2009 .

[208]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[209]  Weiguo Song,et al.  Enhanced electrochemical performance of nano-MnO2 modified by Ni(OH)2 as electrode material for supercapacitor , 2014, Journal of Solid State Electrochemistry.

[210]  Hua-rui Xu,et al.  Electrochemical properties of 3D MnO2 film prepared by chemical bath deposition at room temperature , 2012 .

[211]  Yat Li,et al.  Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors. , 2015, Nanoscale.

[212]  Masa-aki Suzuki,et al.  Capacitive Behavior of Manganese Dioxide/Stainless Steel Electrodes at Different Deposition Currents , 2012 .

[213]  H. Pang,et al.  Two-Dimensional β-MnO2 Nanowire Network with Enhanced Electrochemical Capacitance , 2013, Scientific Reports.

[214]  Yu Xin Zhang,et al.  Rational design of octahedron and nanowire CeO2@MnO2 core-shell heterostructures with outstanding rate capability for asymmetric supercapacitors. , 2015, Chemical communications.

[215]  G. R. Rao,et al.  Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications , 2012 .

[216]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[217]  Wei Zhang,et al.  Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes , 2014 .

[218]  He Zhou,et al.  Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate , 2014 .

[219]  F. Wang,et al.  Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. , 2012, Environmental science & technology.

[220]  J. Eckert,et al.  Role of surface functional groups in ordered mesoporous carbide-derived carbon/ionic liquid electrolyte double-layer capacitor interfaces. , 2014, ACS applied materials & interfaces.

[221]  John B. Goodenough,et al.  Supercapacitor Behavior with KCl Electrolyte , 1999 .

[222]  S. Jiao,et al.  Electrochemically assembling of polythiophene film in ionic liquids (ILs) microemulsions and its application in an electrochemical capacitor , 2014 .

[223]  F. Kang,et al.  Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte , 2013 .

[224]  Qinghua Zhang,et al.  Freestanding composite electrodes of MnOx embedded carbon nanofibers for high-performance supercapacitors , 2014 .

[225]  H. Duan,et al.  One-step synthesis of three-dimensional porous ionic liquid–carbon nanotube–graphene gel and MnO2–graphene gel as freestanding electrodes for asymmetric supercapacitors , 2015 .

[226]  Yan Li,et al.  Hydrothermal synthesis of MnO2 nanowires: structural characterizations, optical and magnetic properties , 2014 .

[227]  M. Nakayama,et al.  Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor , 2007 .

[228]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[229]  Shuiliang Chen,et al.  Three-Dimensional Kenaf Stem-Derived Porous Carbon/MnO2 for High-Performance Supercapacitors , 2014 .

[230]  Xianzhong Sun,et al.  Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors , 2013 .

[231]  Jeong Sook Ha,et al.  Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnOx electrodes and its application , 2015 .

[232]  Kunfeng Chen,et al.  A binary A(x)B(1-x) ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation. , 2015, Nanoscale.

[233]  Haibo Lin,et al.  Anodic preparation and supercapacitive performance of nano-Co3O4/MnO2 composites , 2014 .

[234]  J. Tu,et al.  Metal oxide/hydroxide-based materials for supercapacitors , 2014 .

[235]  Kaixue Wang,et al.  Cobalt-Doped MnO2 Hierarchical Yolk–Shell Spheres with Improved Supercapacitive Performance , 2015 .

[236]  Polyaniline-MnO2 Nanocomposite Supercapacitor Electrodes Prepared by Galvanic Pulse Polymerization , 2013 .

[237]  Pu-Wei Wu,et al.  Synthesis of large surface area carbon xerogels for electrochemical double layer capacitors , 2013 .

[238]  P. Yeh,et al.  Nanoflaky MnO2/functionalized carbon nanotubes for supercapacitors: an in situ X-ray absorption spectroscopic investigation. , 2015, Nanoscale.

[239]  N. Hu,et al.  Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors , 2014, Scientific Reports.

[240]  Fan Zhang,et al.  A Self‐Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes , 2011 .

[241]  Yezhen Zhang,et al.  Design and synthesis of hierarchical porous electrode with nanocomposites of MnO2 thin layer encapsulated carbon nanotubes and its superb charge storage characteristics , 2013 .

[242]  Ayyakkannu Manivannan,et al.  Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors , 2012 .

[243]  Yusuke Yamauchi,et al.  Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors , 2013 .

[244]  Liang Liang,et al.  Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. , 2014, Angewandte Chemie.

[245]  Dongyan Li,et al.  Controlled synthesis of hierarchical MnO2 microspheres with hollow interiors for the removal of benzene , 2014 .

[246]  Y. S. Yun,et al.  Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. , 2015, ACS applied materials & interfaces.

[247]  J. Siirola,et al.  The Global Energy Landscape and Materials Innovation , 2008 .

[248]  Yong Ding,et al.  Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors , 2014 .

[249]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.

[250]  James M Tour,et al.  Graphene‐Wrapped MnO2–Graphene Nanoribbons as Anode Materials for High‐Performance Lithium Ion Batteries , 2013, Advanced materials.

[251]  D. Bélanger,et al.  Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes , 2011 .

[252]  Mingde Zhao,et al.  A facile template-free synthesis of α-MnO2 nanorods for supercapacitor , 2013 .

[253]  M. Huang,et al.  MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors , 2015 .

[254]  Peng Zhang,et al.  Facile synthesis of nitrogen-doped graphene-ultrathin MnO2 sheet composites and their electrochemical performances. , 2013, ACS applied materials & interfaces.

[255]  J. Zhao,et al.  Effects of sodium dodecyl sulfate on the electrochemical behavior of supercapacitor electrode MnO2 , 2013, Journal of Solid State Electrochemistry.

[256]  Hyunsik Im,et al.  Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2–polyaniline nanocomposite electrodes , 2014 .

[257]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[258]  Dusan Losic,et al.  Rapid Fabrication of Micro‐ and Nanoscale Patterns by Replica Molding from Diatom Biosilica , 2007 .

[259]  A. Hirata,et al.  High-energy-density nonaqueous MnO2@nanoporous gold based supercapacitors , 2013 .

[260]  S. Devaraj,et al.  Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties , 2008 .

[261]  Wang Zilong,et al.  High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core–shell nanorods//specially reduced graphene oxide , 2014 .

[262]  Yuxin Zhang,et al.  MnO2@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors , 2014 .

[263]  Haifeng Liu,et al.  Electrodeposited highly-ordered manganese oxide nanowire arrays for supercapacitors , 2012 .

[264]  S. Lofland,et al.  Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips , 2013 .

[265]  C. Liang,et al.  In situ assembly of MnO2 nanowires/graphene oxide nanosheets composite with high specific capacitance , 2014 .

[266]  Dong Jin Lee,et al.  Directly grown Co3O4 nanowire arrays on Ni-foam: structural effects of carbon-free and binder-free cathodes for lithium-oxygen batteries , 2014 .

[267]  Xianmao Lu,et al.  DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors. , 2014, Physical chemistry chemical physics : PCCP.

[268]  R. Ma,et al.  Layered MnO2 Nanobelts: Hydrothermal Synthesis and Electrochemical Measurements , 2004 .

[269]  Huaihao Zhang,et al.  Poly(ethylene oxide)–poly(propylene oxide)–poly(ethyl oxide) enhancing capacitance behavior of composite electrode material poly(o-phenylenediamine)/manganese dioxide for supercapacitor , 2015 .

[270]  A. B. Fuertes,et al.  Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. , 2015, ACS applied materials & interfaces.

[271]  Chi-Chang Hu,et al.  Capacitive performance enhancements of RuO2 nanocrystals through manipulation of preferential orientation growth originated from the synergy of Pluronic F127 trapping and annealing. , 2014, Nanoscale.

[272]  F. Kang,et al.  A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes , 2013 .

[273]  Klaus Müllen,et al.  Graphene-based in-plane micro-supercapacitors with high power and energy densities , 2013, Nature Communications.

[274]  X. W. Sun,et al.  Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices , 2014, Nanotechnology.

[275]  Q. Li,et al.  NiMoO4 nanowire @ MnO2 nanoflake core/shell hybrid structure aligned on carbon cloth for high-performance supercapacitors , 2015 .

[276]  W. Shen,et al.  Preparation and performance comparison of supercapacitors based on nanocomposites of MnO2 with cationic surfactant of CTAC or CTAB by direct electrodeposition , 2014 .

[277]  X. C. Liu,et al.  Rationally designed hierarchical MnO2-shell/ZnO-nanowire/carbon-fabric for high-performance supercapacitor electrodes , 2014 .

[278]  P. J. Sebastian,et al.  Sol-gel template synthesis of highly ordered MnO2 nanowire arrays , 2005 .

[279]  I. Zhitomirsky,et al.  Surface modification and cathodic electrophoretic deposition of ceramic materials and composites using celestine blue dye , 2014 .

[280]  Guoxin Rong,et al.  Ultrathin MnO2 Nanorods on Conducting Polymer Nanofibers as a New Class of Hierarchical Nanostructures for High-Performance Supercapacitors , 2012 .

[281]  Yi Cui,et al.  Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. , 2011, Nano letters.

[282]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[283]  Yuxin Zhang,et al.  Self-assembled spongy-like MnO2 electrode materials for supercapacitors , 2012 .

[284]  Xianzhong Sun,et al.  Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications , 2013 .

[285]  S. Zhu,et al.  Self-assembled three-dimensional hierarchical graphene hybrid hydrogels with ultrathin β-MnO2 nanobelts for high performance supercapacitors , 2015 .

[286]  Chao Yang,et al.  Synthesis and electrochemical properties of two types of highly ordered mesoporous MnO2 , 2010 .

[287]  Hongcai Gao,et al.  High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. , 2012, ACS applied materials & interfaces.

[288]  Meihua Jin,et al.  Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors. , 2014, Small.

[289]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[290]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[291]  Y. Miao,et al.  Diameter-Controlled Synthesis and Capacitive Performance of Mesoporous Dual-Layer MnO2 Nanotubes , 2015 .

[292]  Jian Yan,et al.  Manganese oxide micro-supercapacitors with ultra-high areal capacitance. , 2013, Nanoscale.

[293]  Li-zhen Fan,et al.  A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors. , 2015, ACS applied materials & interfaces.

[294]  T. Truong,et al.  Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium--air batteries. , 2012, ACS nano.

[295]  Thomas M. Higgins,et al.  Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes. , 2012, ACS nano.

[296]  Shuai Wang,et al.  Electrodeposition of manganese oxide nanosheets on a continuous three-dimensional nickel porous scaffold for high performance electrochemical capacitors , 2014 .

[297]  Xiaojuan Hou,et al.  Core–Shell CuCo2O4@MnO2 Nanowires on Carbon Fabrics as High‐Performance Materials for Flexible, All‐Solid‐State, Electrochemical Capacitors , 2014 .

[298]  Chunzhen Yang,et al.  Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors. , 2013, Physical chemistry chemical physics : PCCP.

[299]  Y. Tong,et al.  Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors , 2014 .

[300]  Teng Zhai,et al.  Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor , 2011 .

[301]  R. Ruoff,et al.  Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. , 2012, ACS nano.

[302]  Yong Ding,et al.  Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. , 2013, ACS nano.

[303]  Vikram Kumar,et al.  Sol-gel synthesis of manganese oxide films and their predominant electrochemical properties , 2015 .

[304]  Changwen Hu,et al.  Self-Assembled Nickel Hydroxide Three-Dimensional Nanostructures: A Nanomaterial for Alkaline Rechargeable Batteries , 2007 .

[305]  Martin A. Green,et al.  Solar Energy Conversion Toward 1 Terawatt , 2008 .

[306]  Sheng Liu,et al.  Inorganic nanostructured materials for high performance electrochemical supercapacitors. , 2014, Nanoscale.

[307]  B. Wei,et al.  Facile synthesis and super capacitive behavior of SWNT/MnO2 hybrid films , 2012 .

[308]  P. Gai,et al.  Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells , 2013 .

[309]  F. Kang,et al.  Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors , 2012 .

[310]  Li Li,et al.  Facile Synthesis of MnO2/CNTs Composite for Supercapacitor Electrodes with Long Cycle Stability , 2014 .

[311]  G. Campet,et al.  Hydrothermal Synthesis and Pseudocapacitance Properties of α-MnO2 Hollow Spheres and Hollow Urchins , 2007 .

[312]  C. Zhi,et al.  Honeycomb porous MnO2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density , 2014 .

[313]  Junfang Zhu,et al.  Three‐Dimensional Network Mesoporous Nanostructured α‐Manganese Dioxide with High Supercapacitive Performance: Facile, Environmental and Large‐Scale Synthesis , 2013 .

[314]  Rujia Zou,et al.  Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO2@MnO2 core/shell nanostructures for supercapacitors , 2015 .

[315]  Pooi See Lee,et al.  Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. , 2010, ACS Nano.

[316]  Zenan Yu,et al.  Highly Ordered MnO2 Nanopillars for Enhanced Supercapacitor Performance , 2013, Advanced materials.

[317]  Zengling Wang,et al.  Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area , 2009 .

[318]  S. Komarneni,et al.  Microwave–Hydrothermal Crystallization of Polymorphic MnO2 for Electrochemical Energy Storage , 2013 .

[319]  R. Che,et al.  Paramecium-like α-MnO2 hierarchical hollow structures with enhanced electrochemical capacitance prepared by a facile dopamine carbon-source assisted shell-swelling etching method , 2014 .

[320]  A. De,et al.  Conducting polymer based manganese dioxide nanocomposite as supercapacitor , 2013 .

[321]  Chunhuan Jiang,et al.  Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. , 2015, ACS applied materials & interfaces.

[322]  Yaqiong Wang,et al.  Calcination removing soft template cetyl trimethyl ammonium bromide and its effects on capacitance performance of supercapacitor electrode MnO2 , 2014 .

[323]  Jeng‐Kuei Chang,et al.  High-performance electrochemical pseudo-capacitor based on MnO2 nanowires/Ni foam as electrode with a novel Li-ion quasi-ionic liquid as electrolyte , 2011 .

[324]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[325]  Ananthakumar Ramadoss,et al.  Hierarchically structured TiO2@MnO2 nanowall arrays as potential electrode material for high-performance supercapacitors , 2014 .

[326]  Wenwen Liu,et al.  High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. , 2015, ACS nano.

[327]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[328]  T. Pal,et al.  Morphological Evolution of Two-Dimensional MnO2 Nanosheets and Their Shape Transformation to One-Dimensional Ultralong MnO2 Nanowires for Robust Catalytic Activity , 2013 .

[329]  Lianzhou Wang,et al.  Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. , 2015, Chemistry.

[330]  Xiaoyang Liu,et al.  Facile Synthesis of Three Dimensional NiCo2O4@MnO2 Core–Shell Nanosheet Arrays and its Supercapacitive Performance , 2015 .

[331]  Huisheng Peng,et al.  Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber , 2013, Advanced materials.

[332]  Husam N. Alshareef,et al.  Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. , 2011, ACS nano.

[333]  Rujia Zou,et al.  Three-dimensional networked NiCo2O4/MnO2 branched nanowire heterostructure arrays on nickel foam with enhanced supercapacitor performance , 2015 .

[334]  T. P. Kumar,et al.  Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior , 2013 .

[335]  D. Bélanger,et al.  Development of new nanocomposite based on nanosized-manganese oxide and carbon nanotubes for high performance electrochemical capacitors , 2010 .

[336]  Changsoon Choi,et al.  Flexible Supercapacitor Made of Carbon Nanotube Yarn with Internal Pores , 2014, Advanced materials.

[337]  Daoyuan Yang,et al.  Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors. , 2014, ACS applied materials & interfaces.

[338]  V. Pavlínek,et al.  Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance , 2013 .

[339]  Limin Wu,et al.  Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. , 2014, ACS applied materials & interfaces.

[340]  Teng Zhai,et al.  Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. , 2014, Nano letters.

[341]  Yuena Meng,et al.  Carbon@MnO2 core–shell nanospheres for flexible high-performance supercapacitor electrode materials , 2014 .

[342]  J. Bae,et al.  TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor , 2013, Scientific Reports.

[343]  Zonghuai Liu,et al.  MnO2 nanoflakes grown on 3D graphite network for enhanced electrocapacitive performance , 2014 .

[344]  Songting Tan,et al.  Preparation and characterization of nanostructured NiO/MnO2 composite electrode for electrochemical supercapacitors , 2009 .

[345]  Jee Youn Hwang,et al.  Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage , 2015, Proceedings of the National Academy of Sciences.

[346]  Xinhua Li,et al.  Flexible supercapacitor based on MnO2 nanoparticles via electrospinning , 2013 .

[347]  V. Pavlínek,et al.  MnO2 nanoflakes/hierarchical porous carbon nanocomposites for high-performance supercapacitor electrodes , 2015 .

[348]  Jianlin Shi,et al.  Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance , 2007 .

[349]  Chi-Chang Hu,et al.  Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition , 2002 .

[350]  M. Jafari,et al.  MnO2 nanoparticles decorated on electrophoretically deposited graphene nanosheets for high performance supercapacitor , 2015 .

[351]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[352]  Jing Xu,et al.  A flexible integrated photodetector system driven by on-chip microsupercapacitors , 2015 .

[353]  Haitao Jiang,et al.  Influence of surfactant CTAB on the electrochemical performance of manganese dioxide used as supercapacitor electrode material , 2012 .

[354]  D. He,et al.  Preparation of nano-networks of MnO2 shell/Ni current collector core for high-performance supercapacitor electrodes , 2012 .

[355]  S. Bian,et al.  Porous MnO2 hollow spheres constructed by nanosheets and their application in electrochemical capacitors , 2013 .

[356]  Ye Hou,et al.  Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. , 2010, Nano letters.

[357]  Shijie Wang,et al.  Controlled Construction of Hierarchical Nanocomposites Consisting of MnO2 and PEDOT for High‐Performance Supercapacitor Applications , 2015 .

[358]  M. Tadé,et al.  New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures , 2015 .

[359]  T. Fisher,et al.  Large-scale synthesis and activation of polygonal carbon nanofibers with thin ribbon-like structures for supercapacitor electrodes , 2015 .

[360]  Wen-Yin Ko,et al.  Solvothermal synthesis of shape-controlled manganese oxide materials and their electrochemical capacitive performances , 2014 .

[361]  P. Irazoqui,et al.  Ultrasmall Integrated 3D Micro‐Supercapacitors Solve Energy Storage for Miniature Devices , 2014 .

[362]  Byung-Sun Kim,et al.  Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated Carbon Nanotube Fibers. , 2015, ACS nano.

[363]  Ning Wang,et al.  λ-MnO2 nanodisks and their magnetic properties , 2007 .

[364]  Rujia Zou,et al.  Hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors , 2014 .

[365]  Xiaogang Zhang,et al.  Facile interfacial synthesis of flower-like hierarchical a-MnO2 sub-microspherical superstructures constructed by two-dimension mesoporous nanosheets and their application in electrochemical capacitors , 2011 .

[366]  S. Kundu,et al.  DNA-encapsulated chain and wire-like β-MnO2 organosol for oxidative polymerization of pyrrole to polypyrrole. , 2015, Physical chemistry chemical physics : PCCP.

[367]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[368]  I. Zhitomirsky,et al.  Asymmetric Supercapacitors Based on Activated‐Carbon‐Coated Carbon Nanotubes , 2015 .

[369]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[370]  Igor Zhitomirsky,et al.  Activated Carbon-Coated Carbon Nanotubes for Energy Storage in Supercapacitors and Capacitive Water Purification , 2014 .

[371]  H. Ahn,et al.  Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries , 2013 .

[372]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[373]  Masa-aki Suzuki,et al.  MnO2/carbon nanowall electrode for future energy storage application: effect of carbon nanowall growth period and MnO2 mass loading , 2014 .

[374]  Zhenan Bao,et al.  Hybrid nanostructured materials for high-performance electrochemical capacitors , 2013 .

[375]  Shi Xue Dou,et al.  Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors , 2008 .

[376]  Fashen Li,et al.  Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. , 2009, Chemical communications.

[377]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[378]  Jianlin Shi,et al.  Electrochemical and oxygen desorption properties of nanostructured ternary compound NaxMnO2 directly templated from mesoporous SBA-15 , 2008 .

[379]  Yun Lu,et al.  Flexible α-MnO 2 paper formed by millimeter-long nanowires for supercapacitor electrodes , 2014 .

[380]  Shimou Chen,et al.  Direct hydrothermal synthesis of nanosized mesoporous ramsdellite manganese oxide with high surface area , 2012 .

[381]  Q. Wang,et al.  Highly sensitive p-nitrophenol chemical sensor based on crystalline α-MnO2 nanotubes , 2014 .

[382]  Rumin Li,et al.  MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors. , 2015, Chemistry.

[383]  Huan Pang,et al.  Cu superstructures fabricated using tree leaves and Cu–MnO2 superstructures for high performance supercapacitors , 2013 .

[384]  G. Pognon,et al.  Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor , 2015 .

[385]  Baohua Li,et al.  Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices , 2013 .

[386]  Jyhfu Lee,et al.  Fabrication of Mn/Mn oxide core–shell electrodes with three-dimensionally ordered macroporous structures for high-capacitance supercapacitors , 2013 .

[387]  A. Senthilkumar,et al.  Influence of Zn doping on the electrochemical capacitor behavior of MnO2 nanocrystals , 2015 .

[388]  Lei Zhang,et al.  Controllable hydrothermal synthesis of Cu-doped δ-MnO2 films with different morphologies for energy storage and conversion using supercapacitors , 2014 .

[389]  Dan Zhou,et al.  Facile controlled synthesis of MnO2 nanowires for supercapacitors , 2014, Journal of Solid State Electrochemistry.