The State of the Art in Graph-Based Pattern Matching

The task of searching for patterns in graph-structured data has applications in such diverse areas as computer vision, biology, electronics, computer aided design, social networks, and intelligence analysis. As such, work on graph-based pattern matching spans a wide range of research communities. Due to variations in graph characteristics and problem requirements, graph-based pattern matching is not a single problem, but a set of related problems. This paper presents a survey of existing work on graph-based pattern matching, describing variations among graph matching problems, general and specific solution approaches, evaluation techniques, and directions for further research. An emphasis is given to techniques that apply to general graphs with semantic characteristics. The survey also discusses techniques for graph mining, an extension of the graph matching problem.

[1]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[2]  Dennis Shasha,et al.  GraphGrep: A fast and universal method for querying graphs , 2002, Object recognition supported by user interaction for service robots.

[3]  M. Wolverto,et al.  Software Supported Pattern Development in Intelligence Analysis , 2006, 2006 IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety.

[4]  John D. Lowrance,et al.  Link Analysis Workbench , 2004 .

[5]  Horst Bunke,et al.  Inexact graph matching for structural pattern recognition , 1983, Pattern Recognit. Lett..

[6]  Hongjun Lu,et al.  Bloom Histogram: Path Selectivity Estimation for XML Data with Updates , 2004, VLDB.

[7]  Lawrence B. Holder,et al.  Substructure Discovery Using Minimum Description Length and Background Knowledge , 1993, J. Artif. Intell. Res..

[8]  Joost N. Kok,et al.  Frequent graph mining and its application to molecular databases , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[9]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[10]  Mario Vento,et al.  A Performance Comparison of Five Algorithms for Graph Isomorphism , 2001 .

[11]  Yannis E. Ioannidis,et al.  Balancing histogram optimality and practicality for query result size estimation , 1995, SIGMOD '95.

[12]  Bart Goethals,et al.  Mining tree queries in a graph , 2005, KDD '05.

[13]  Ralf Hartmut Güting,et al.  The GraphDB Algebra: Specification of Advanced Data Models with Second-Order Signature , 1995 .

[14]  Sherry Marcus,et al.  Graph-based technologies for intelligence analysis , 2004, CACM.

[15]  Christian Borgelt,et al.  Mining molecular fragments: finding relevant substructures of molecules , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[16]  Neil Immerman,et al.  A Visual Language for Querying and Updating Graphs , 2002 .

[17]  Neoklis Polyzotis,et al.  Statistical synopses for graph-structured XML databases , 2002, SIGMOD '02.

[18]  Phillip B. Gibbons,et al.  Approximate Query Processing: Taming the TeraBytes! A Tutorial , 2001 .

[19]  Lawrence B. Holder,et al.  An Emprirical Study of Domain Knowledge and Its Benefits to Substructure Discovery , 1997, IEEE Trans. Knowl. Data Eng..

[20]  Dennis Shasha,et al.  Algorithmics and applications of tree and graph searching , 2002, PODS.

[21]  Takashi Washio,et al.  State of the art of graph-based data mining , 2003, SKDD.

[22]  Thorsten Meinl,et al.  A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston , 2005, PKDD.

[23]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[24]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  RalfHiutmut Gtiting,et al.  GraphDB : Modeling and Querying Graphs in Databases , 1998 .

[26]  Roy Rada,et al.  Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..

[27]  George Karypis,et al.  Finding Frequent Patterns in a Large Sparse Graph* , 2005, Data Mining and Knowledge Discovery.

[28]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[29]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[31]  John D. Lowrance,et al.  LAW: A Workbench for Approximate Pattern Matching in Relational Data , 2003, IAAI.

[32]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[33]  Amit P. Sheth,et al.  Template Based Semantic Similarity for Security Applications , 2005, ISI.