Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations.

[1]  M. Weirauch,et al.  Correction: Corrigendum: Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia , 2017, Nature Immunology.

[2]  Gunnar Rätsch,et al.  Prediction of ultra-potent shRNAs with a sequential classification algorithm , 2017, Nature Biotechnology.

[3]  Jiwang Zhang,et al.  Necroptosis in spontaneously-mutated hematopoietic cells induces autoimmune bone marrow failure in mice , 2017, Haematologica.

[4]  M. Weirauch,et al.  Ubiquitination of the spliceosome auxiliary factor hnRNPA1 by TRAF6 links chronic innate immune signaling with hematopoietic defects and myelodysplasia , 2016, Nature Immunology.

[5]  J. Cleveland,et al.  The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. , 2016, Blood.

[6]  Michelle C. Chen,et al.  Physiologic Expression of Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation. , 2016, Cancer cell.

[7]  D. Kent,et al.  Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts , 2016, Leukemia.

[8]  S. Armstrong,et al.  Modulation of splicing catalysis for therapeutic targeting of leukemias with spliceosomal mutations , 2016, Nature Medicine.

[9]  M. Warmuth,et al.  Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice Site Selection through Use of a Different Branch Point. , 2015, Cell reports.

[10]  A. Karsan,et al.  Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor–TRAF6 signaling , 2015, The Journal of experimental medicine.

[11]  Alexander V Penson,et al.  Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities , 2015, Proceedings of the National Academy of Sciences.

[12]  H. Deeg,et al.  SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. , 2015, Cancer cell.

[13]  A. Derti,et al.  A chemical genetics approach for the functional assessment of novel cancer genes. , 2015, Cancer research.

[14]  Dennis Carson,et al.  Transcriptome Sequencing Reveals Potential Mechanism of Cryptic 3’ Splice Site Selection in SF3B1-mutated Cancers , 2015, PLoS Comput. Biol..

[15]  Raphael Gottardo,et al.  Orchestrating high-throughput genomic analysis with Bioconductor , 2015, Nature Methods.

[16]  M Cazzola,et al.  Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells , 2014, Leukemia.

[17]  H. Dvinge,et al.  Sample processing obscures cancer-specific alterations in leukemic transcriptomes , 2014, Proceedings of the National Academy of Sciences.

[18]  M. Weirauch,et al.  Myeloid malignancies with chromosome 5q deletions acquire a dependency on an intrachromosomal NF-κB gene network. , 2014, Cell reports.

[19]  D. Starczynowski Errant innate immune signaling in del(5q) MDS. , 2014, Blood.

[20]  Philip Bradley,et al.  U2AF1 mutations alter splice site recognition in hematological malignancies , 2014, bioRxiv.

[21]  Christof Fellmann,et al.  An optimized microRNA backbone for effective single-copy RNAi. , 2013, Cell reports.

[22]  M. Stratton,et al.  Clinical and biological implications of driver mutations in myelodysplastic syndromes. , 2013, Blood.

[23]  C Haferlach,et al.  Landscape of genetic lesions in 944 patients with myelodysplastic syndromes , 2013, Leukemia.

[24]  D. Neuberg,et al.  Toll-like receptor alterations in myelodysplastic syndrome , 2013, Leukemia.

[25]  A. Hinnebusch,et al.  Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3 , 2013, Nature Genetics.

[26]  T. Graf,et al.  CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. , 2013, Blood.

[27]  Emily J. Girard,et al.  Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A , 2013 .

[28]  A. M. de Bruin,et al.  In Vivo Knockdown of TAK1 Accelerates Bone Marrow Proliferation/Differentiation and Induces Systemic Inflammation , 2013, PloS one.

[29]  A. Tefferi,et al.  Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: Prevalence, clinical correlates, and prognostic relevance , 2013, American journal of hematology.

[30]  Ying Zhao,et al.  Chronic TLR Signaling Impairs the Long-Term Repopulating Potential of Hematopoietic Stem Cells of Wild Type but Not Id1 Deficient Mice , 2013, PloS one.

[31]  A. Bowcock,et al.  Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma , 2013, Nature Genetics.

[32]  Michael D. Schneider,et al.  Deletion of TAK1 in the Myeloid Lineage Results in the Spontaneous Development of Myelomonocytic Leukemia in Mice , 2012, PloS one.

[33]  Laurent Gil,et al.  Ensembl 2013 , 2012, Nucleic Acids Res..

[34]  Brian T. Lee,et al.  The UCSC Genome Browser database: extensions and updates 2013. , 2012, Nucleic acids research.

[35]  A. Tefferi,et al.  SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. , 2012, Blood.

[36]  S. Ogawa,et al.  SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). , 2012, Blood.

[37]  D. Neuberg,et al.  Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[38]  M. Gönen,et al.  Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. , 2012, Blood.

[39]  Michael Heuser,et al.  Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. , 2012, Blood.

[40]  A. Jankowska,et al.  Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. , 2012, Blood.

[41]  Claude Preudhomme,et al.  Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. , 2012, Blood.

[42]  D. Stupack,et al.  Caspase-8 isoform 6 promotes death effector filament formation independent of microtubules , 2012, Apoptosis.

[43]  G. Kollias,et al.  Myeloid Takl Acts as a Negative Regulator of the LPS Response and Mediates Resistance to Endotoxemia , 2012, PloS one.

[44]  B. Su,et al.  TAK1 negatively regulates NF-κB and p38 MAP kinase activation in Gr-1+CD11b+ neutrophils. , 2012, Immunity.

[45]  A. Sivachenko,et al.  SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. , 2011, The New England journal of medicine.

[46]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2011 , 2011, Nucleic Acids Res..

[47]  M. Stratton,et al.  Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. , 2011, The New England journal of medicine.

[48]  S. Sugano,et al.  Frequent pathway mutations of splicing machinery in myelodysplasia , 2011, Nature.

[49]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[50]  L. Nie,et al.  Chronic Exposure to a TLR Ligand Injures Hematopoietic Stem Cells , 2011, The Journal of Immunology.

[51]  Eric T. Wang,et al.  Analysis and design of RNA sequencing experiments for identifying isoform regulation , 2010, Nature Methods.

[52]  Peter A. C. 't Hoen,et al.  mRNA degradation controls differentiation state-dependent differences in transcript and splice variant abundance , 2010, Nucleic Acids Res..

[53]  E. Wagenmakers,et al.  Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method , 2010, Cognitive Psychology.

[54]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[55]  Matthew D. Young,et al.  Gene ontology analysis for RNA-seq: accounting for selection bias , 2010, Genome Biology.

[56]  Q. Rao,et al.  A New Caspase-8 Isoform Caspase-8s Increased Sensitivity to Apoptosis in Jurkat Cells , 2010, Journal of biomedicine & biotechnology.

[57]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[58]  S. Akira,et al.  TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice , 2008, The Journal of experimental medicine.

[59]  Mark J. Murphy,et al.  Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. , 2008, Cell stem cell.

[60]  Lina A. Thoren,et al.  Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. , 2007, Cell stem cell.

[61]  T. Suda,et al.  Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. , 2007, Cell stem cell.

[62]  S. Akira,et al.  Essential function for the kinase TAK1 in innate and adaptive immune responses , 2005, Nature Immunology.

[63]  T. Miyashita,et al.  Caspase‐8 and caspase‐10 activate NF‐κB through RIP, NIK and IKKα kinases , 2003 .

[64]  L. Hood,et al.  Activation of the NF-κB pathway by Caspase 8 and its homologs , 2000, Oncogene.

[65]  H. Shu,et al.  Activation of NF-κB by FADD, Casper, and Caspase-8* , 2000, The Journal of Biological Chemistry.

[66]  D. Goeddel,et al.  Casper is a FADD- and caspase-related inducer of apoptosis. , 1997, Immunity.

[67]  J. Tschopp,et al.  Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors , 1997, Nature.

[68]  W S Alexander,et al.  Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. , 1996, Blood.

[69]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.