Multi-Label Low-dimensional Embedding with Missing Labels

Abstract Multi-label learning is to predict proper label sets for each training sample. Usually, the label sets of instances within the same group exhibit certain similarities. It means label sets sharing the same cluster are strongly correlated with each other while label sets of other clusters are loosely correlated. In this study, we calculate the instance-wise cosine similarity on label sets of three multi-label benchmarks in different applications to validate our hypothesis. To facilitate label imputation procedure, we exploit the low rank and sparse properties to capture the global structure of label sets in instance level. Besides, some datasets may not show clear separation of label sets by topics. The proposed label recovery method can also handle this kind of datasets. In addition to the instance-wise label correlation used in the output space to handle missing labels, the feature and label connection is also mined in the input space to learn an inductive classifier for out-of-sample extrapolation. Experimental results on three benchmark datasets in image annotation, action units detection and text categorization demonstrate the effectiveness of the proposed method on datasets with distinct category; experimental results on nine benchmark datasets in music, biology, video, audio, image and text domains demonstrate the effectiveness of the proposed method on datasets with indistinct category.

[1]  Min-Ling Zhang,et al.  A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.

[2]  Amanda Clare,et al.  Knowledge Discovery in Multi-label Phenotype Data , 2001, PKDD.

[3]  Baoyuan Wu,et al.  ML-MG: Multi-label Learning with Missing Labels Using a Mixed Graph , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[4]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[5]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[6]  Philip S. Yu,et al.  Large-Scale Multi-Label Learning with Incomplete Label Assignments , 2014, SDM.

[7]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[8]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[9]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[10]  Trevor Hastie,et al.  Multi-class AdaBoost ∗ , 2009 .

[11]  Mohammad H. Mahoor,et al.  Facial action unit recognition with sparse representation , 2011, Face and Gesture 2011.

[12]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[13]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[14]  Takeo Kanade,et al.  The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[15]  Chris H. Q. Ding,et al.  Multi-label Linear Discriminant Analysis , 2010, ECCV.

[16]  Shuicheng Yan,et al.  Image tag refinement towards low-rank, content-tag prior and error sparsity , 2010, ACM Multimedia.

[17]  Nenghai Yu,et al.  Non-negative low rank and sparse graph for semi-supervised learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[19]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[20]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[21]  Jason Weston,et al.  Support vector machines for multi-class pattern recognition , 1999, ESANN.

[22]  Miao Xu,et al.  Speedup Matrix Completion with Side Information: Application to Multi-Label Learning , 2013, NIPS.

[23]  Zhen Wang,et al.  Learning Low-Rank Label Correlations for Multi-label Classification with Missing Labels , 2014, 2014 IEEE International Conference on Data Mining.

[24]  Qiang Ji,et al.  Multi-label learning with missing labels for image annotation and facial action unit recognition , 2015, Pattern Recognit..

[25]  Fred G. Gustavson,et al.  Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition , 1978, TOMS.

[26]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[27]  David Zhang,et al.  Multi-Label Dictionary Learning for Image Annotation , 2016, IEEE Transactions on Image Processing.

[28]  Zhi-Hua Zhou,et al.  Multi-Label Learning by Exploiting Label Correlations Locally , 2012, AAAI.

[29]  Eyke Hüllermeier,et al.  Multilabel classification via calibrated label ranking , 2008, Machine Learning.

[30]  Jianmin Wang,et al.  Image Tag Completion via Image-Specific and Tag-Specific Linear Sparse Reconstructions , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Rong Jin,et al.  Multi-label learning with incomplete class assignments , 2011, CVPR 2011.

[32]  Lei Wu,et al.  Tag Completion for Image Retrieval , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[34]  Tommy W. S. Chow,et al.  ML-TREE: A Tree-Structure-Based Approach to Multilabel Learning , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[35]  Jieping Ye,et al.  Hypergraph spectral learning for multi-label classification , 2008, KDD.

[36]  Jieping Ye,et al.  A shared-subspace learning framework for multi-label classification , 2010, TKDD.

[37]  Glenn Fung,et al.  Multicategory Proximal Support Vector Machine Classifiers , 2005, Machine Learning.

[38]  Zhi-Hua Zhou,et al.  Multilabel dimensionality reduction via dependence maximization , 2008, TKDD.

[39]  Eyke Hüllermeier,et al.  Label ranking by learning pairwise preferences , 2008, Artif. Intell..

[40]  Shuicheng Yan,et al.  Multi-label sparse coding for automatic image annotation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  P. Ekman,et al.  What the face reveals : basic and applied studies of spontaneous expression using the facial action coding system (FACS) , 2005 .

[42]  Ming Yang,et al.  Mining partially annotated images , 2011, KDD.

[43]  Yiming Yang,et al.  RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..

[44]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[45]  Qiang Ji,et al.  Multi-label Learning with Missing Labels , 2014, 2014 22nd International Conference on Pattern Recognition.

[46]  Yuhong Guo,et al.  Semi-Supervised Multi-Label Learning with Incomplete Labels , 2015, IJCAI.

[47]  Min-Ling Zhang,et al.  Lift: Multi-Label Learning with Label-Specific Features , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Jicong Fan,et al.  Matrix completion by least-square, low-rank, and sparse self-representations , 2017, Pattern Recognit..

[49]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[50]  Alexandre Bernardino,et al.  Matrix Completion for Multi-label Image Classification , 2011, NIPS.

[51]  Tommy W. S. Chow,et al.  Robust non-negative sparse graph for semi-supervised multi-label learning with missing labels , 2018, Inf. Sci..

[52]  Grigorios Tsoumakas,et al.  Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.

[53]  Robert D. Nowak,et al.  Transduction with Matrix Completion: Three Birds with One Stone , 2010, NIPS.

[54]  Volker Tresp,et al.  Multi-label informed latent semantic indexing , 2005, SIGIR '05.

[55]  Xue Li,et al.  Low-rank image tag completion with dual reconstruction structure preserved , 2016, Neurocomputing.

[56]  Jicong Fan,et al.  Sparse subspace clustering for data with missing entries and high-rank matrix completion , 2017, Neural Networks.

[57]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[58]  Jason Weston,et al.  A kernel method for multi-labelled classification , 2001, NIPS.