Closed-loop reactor network synthesis with guaranteed robustness

Abstract This paper presents a systematic methodology to design closed-loop reactor networks with guaranteed robustness. The methodology is based on the superstructure approach for reactor network synthesis and extends our previous work ( Zhao and Marquardt, 2016 ) to simultaneously design the process and the control system structure. The spectral abscissa of the Jacobian matrix of the closed-loop reactor network is chosen to measure the response speed of the designed process. A mixed-integer nonlinear program (MINLP) with complementarity constraints and a robust eigenvalue constraint is formulated and solved sequentially by a two-step solution strategy. Structural alternatives of the process and the control system as well as parametric uncertainties are considered in an integrated framework. A case study involving continuous stirred-tank (CSTR) and plug flow (PFR) reactors is presented to illustrate the novel approach and compared with an established two-step design approach.

[1]  C. Floudas Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications , 1995 .

[2]  I. Grossmann,et al.  New algorithms for nonlinear generalized disjunctive programming , 2000 .

[3]  Efstratios N. Pistikopoulos,et al.  Recent advances in optimization-based simultaneous process and control design , 2004, Comput. Chem. Eng..

[4]  Bojan Pahor,et al.  Synthesis of reactor networks in overall process flowsheets within the multilevel MINLP approach , 2001 .

[5]  Luis A. Ricardez-Sandoval,et al.  Integration of design and control for chemical processes: A review of the literature and some recent results , 2009, Annu. Rev. Control..

[6]  Paul I. Barton,et al.  Global solution of semi-infinite programs , 2004 .

[7]  Oliver Stein,et al.  Continuous reformulations of discrete-continuous optimization problems , 2004, Comput. Chem. Eng..

[8]  Oliver Stein,et al.  How to solve a semi-infinite optimization problem , 2012, Eur. J. Oper. Res..

[9]  J. D. Perkins,et al.  Heuristic-Based Mathematical Programming Framework for Control Structure Selection , 2001 .

[10]  Efstratios N. Pistikopoulos,et al.  Optimal design of dynamic systems under uncertainty , 1996 .

[11]  William L. Luyben,et al.  Plantwide control design procedure , 1997 .

[12]  Ahmet Palazoglu,et al.  Design of chemical plants with improved dynamic operability in an environment of uncertainty , 1985 .

[13]  Sigurd Skogestad,et al.  Optimal measurement combinations as controlled variables , 2009 .

[14]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[15]  Zayna Al-Husseini,et al.  IDEAS based synthesis of minimum volume reactor networks featuring residence time density/distribution models , 2014, Comput. Chem. Eng..

[16]  J. D. Perkins,et al.  Process control structure selection based on economics , 2000 .

[17]  Martin Mönnigmann,et al.  Constructive nonlinear dynamics in process systems engineering , 2005, Comput. Chem. Eng..

[18]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[19]  Manfred Morari,et al.  Robust measurement selection , 1991, Autom..

[20]  Rafiqul Gani,et al.  State‐of‐the‐art and progress in the optimization‐based simultaneous design and control for chemical processes , 2012 .

[21]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[22]  A. Niederlinski A heuristic approach to the design of linear multivariable interacting control systems , 1971 .

[23]  Wolfgang Marquardt,et al.  Robust Design of Closed-Loop Nonlinear Systems with Input and State Constraints , 2006 .

[24]  B. de Jager,et al.  Control structure design: a survey , 1995 .

[25]  Michel Kinnaert,et al.  Interaction measures and pairing of controlled and manipulated variables for multiple-input-multiple-output systems: a survey , 1995 .

[26]  Dragoslav D. Šiljak,et al.  Decentralized control of complex systems , 2012 .

[27]  Alexander Mitsos,et al.  Global optimization of generalized semi-infinite programs via restriction of the right hand side , 2014, Journal of Global Optimization.

[28]  Sonja Veelken,et al.  A New Relaxation Scheme for Mathematical Programs with Equilibrium Constraints: Theory and Numerical Experience , 2009 .

[29]  Xiao Zhao,et al.  Reactor network synthesis with guaranteed robust stability , 2016, Comput. Chem. Eng..

[30]  Ignacio E. Grossmann,et al.  A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems , 2001 .

[31]  Vasilios Manousiouthakis On the parametrization of all decentralized stabilizing controllers , 1993 .

[32]  M. Salgado,et al.  MIMO interaction measure and controller structure selection , 2004 .

[33]  Lorenz T. Biegler,et al.  MPEC problem formulations and solution strategies with chemical engineering applications , 2008, Comput. Chem. Eng..

[34]  V. Manousiouthakis,et al.  Best achievable decentralized performance , 1995, IEEE Trans. Autom. Control..

[35]  Vasilios Manousiouthakis,et al.  Infinite DimEnsionAl State-space approach to reactor network synthesis: application to attainable region construction , 2002 .

[36]  Wenjian Cai,et al.  Control structure selection based on relative interaction decomposition , 2006 .

[37]  Wolfgang Marquardt,et al.  Robust control design of a class of nonlinear input- and state-constrained systems , 2013, Annu. Rev. Control..

[38]  Thomas E. Marlin,et al.  Control Structure Design to Achieve Multiple Performance Criteria , 2004 .

[39]  J. D. Perkins,et al.  Selection of process control structure based on economics , 1994 .

[40]  Hamid Reza Shaker,et al.  Control Configuration Selection for Multivariable Nonlinear Systems , 2012 .

[41]  L. Biegler,et al.  Smoothing methods for complementarity problems in process engineering , 1999 .

[42]  M. Teresa T. Monteiro,et al.  Solving Mathematical Programs with Complementarity Constraints with Nonlinear Solvers , 2006 .

[43]  Martin Mönnigmann,et al.  Numerical solution approaches for robust nonlinear optimal control problems , 2008, Comput. Chem. Eng..

[44]  Frank Allgöwer,et al.  Decentralized state feedback control for interconnected systems with application to power systems , 2014 .

[45]  Kelvin T. Erickson,et al.  Plantwide process control , 1999 .

[46]  T. McAvoy,et al.  Optimal selection of measurements and manipulated variables for production control , 2010 .

[47]  Michael A. Saunders,et al.  USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .

[48]  A. Laub,et al.  The singular value decomposition: Its computation and some applications , 1980 .

[49]  Wim Michiels,et al.  The Smoothed Spectral Abscissa for Robust Stability Optimization , 2009, SIAM J. Optim..

[50]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[51]  R. Raman,et al.  Modelling and computational techniques for logic based integer programming , 1994 .

[52]  Vasilios Manousiouthakis,et al.  Synthesis of decentralized process control structures using the concept of block relative gain , 1986 .

[53]  Lubomír Bakule,et al.  Decentralized control: An overview , 2008, Annu. Rev. Control..

[54]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[55]  Sven Leyffer,et al.  Solving mathematical programs with complementarity constraints as nonlinear programs , 2004, Optim. Methods Softw..

[56]  E. Bristol On a new measure of interaction for multivariable process control , 1966 .

[57]  Martin Mönnigmann,et al.  Normal Vectors on Manifolds of Critical Points for Parametric Robustness of Equilibrium Solutions of ODE Systems , 2002, J. Nonlinear Sci..

[58]  Oliver Stein,et al.  Generalized semi-infinite programming: A tutorial , 2008 .

[59]  T. McAvoy Synthesis of Plantwide Control Systems Using Optimization , 1999 .

[60]  Stefan Scholtes,et al.  Convergence Properties of a Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2000, SIAM J. Optim..

[61]  Vasilios Manousiouthakis,et al.  Variable density fluid reactor network synthesis—Construction of the attainable region through the IDEAS approach , 2007 .

[62]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[63]  S. Leyffer Complementarity constraints as nonlinear equations: Theory and numerical experience , 2006 .

[64]  Sten Bay Jørgensen,et al.  Towards Automatic Decentralized Control Structure Selection , 2000 .

[65]  Sigurd Skogestad,et al.  Control structure design for complete chemical plants , 2004, Comput. Chem. Eng..

[66]  Wen Zhou,et al.  Non-ideal reactor network synthesis through IDEAS: Attainable region construction , 2006 .