Optical parametric oscillation in silicon carbide nanophotonics

Silicon carbide (SiC) is rapidly emerging as a leading platform for the implementation of nonlinear and quantum photonics. Here, we find that commercial SiC, which hosts a variety of spin qubits, possesses low optical absorption that can enable SiC integrated photonics with quality factors exceeding $10^7$. We fabricate microring resonators with quality factors as high as 1.1 million, and observe low-threshold (8.5 $\pm$ 0.5 mW) optical parametric oscillation as well as optical microcombs spanning 200 nm. Our demonstration is an essential milestone in the development of photonic devices that harness the unique optical properties of SiC, paving the way toward the monolithic integration of nonlinear photonics with spin-based quantum technologies.

[1]  David O. Bracher,et al.  Purcell enhancement of a single silicon carbide color center with coherent spin control. , 2020, Nano letters.

[2]  N. T. Son,et al.  Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide , 2020, Nature Communications.

[3]  Dries Vercruysse,et al.  Nanophotonic inverse design with SPINS: Software architecture and practical considerations , 2019, Applied Physics Reviews.

[4]  Dries Vercruysse,et al.  4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics , 2020 .

[5]  Yi Zheng,et al.  4H-SiC microring resonators for nonlinear integrated photonics. , 2019, Optics letters.

[6]  K. Srinivasan,et al.  Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics. , 2019, Optica.

[7]  Susumu Noda,et al.  Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide , 2019, Optica.

[8]  N. T. Son,et al.  Electrical and optical control of single spins integrated in scalable semiconductor devices , 2019, Science.

[9]  T. C. Briles,et al.  Architecture for the photonic integration of an optical atomic clock , 2019, Optica.

[10]  T. C. Briles,et al.  Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics , 2019, Nature Photonics.

[11]  Dries Vercruysse,et al.  Inverse-designed diamond photonics , 2018, Nature Communications.

[12]  N. T. Son,et al.  High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide , 2018, Nature Communications.

[13]  A. Adibi,et al.  High-quality integrated microdisk resonators in the visible-to-near-infrared wavelength range on a 3C-silicon carbide-on-insulator platform , 2019 .

[14]  B. Eble,et al.  Nitrogen vacancy center in cubic silicon carbide: A promising qubit in the 1.5μm spectral range for photonic quantum networks , 2018, Physical Review B.

[15]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[16]  A. Clerk,et al.  Enhancing Cavity Quantum Electrodynamics via Antisqueezing: Synthetic Ultrastrong Coupling. , 2017, Physical review letters.

[17]  Roberto Morandotti,et al.  On-chip generation of high-dimensional entangled quantum states and their coherent control , 2017, Nature.

[18]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[19]  Xu Yi,et al.  Active capture and stabilization of temporal solitons in microresonators. , 2016, Optics letters.

[20]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[21]  G. Astakhov,et al.  All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide , 2015, 1511.04663.

[22]  Jian Wang,et al.  Mode-locked dark pulse Kerr combs in normal-dispersion microresonators , 2015, Nature Photonics.

[23]  M. Lipson,et al.  Optical nonlinearities in high-confinement silicon carbide waveguides. , 2015, Optics letters.

[24]  I. Gerhardt,et al.  Coherent control of single spins in silicon carbide at room temperature. , 2014, Nature materials.

[25]  Jonathan Y. Lee,et al.  Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. , 2014, Optics express.

[26]  G. Wang,et al.  4H‐SiC: a new nonlinear material for midinfrared lasers , 2013 .

[27]  M. Lipson,et al.  High Q SiC microresonators. , 2013, Optics Express.

[28]  Carmen S. Menoni,et al.  Study of spontaneous and induced absorption in amorphous Ta2O5 and SiO2 dielectric thin films , 2013 .

[29]  Yan Peng,et al.  Thermal conductivity of 4H-SiC single crystals , 2013 .

[30]  C. Menyuk,et al.  Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators , 2012, 1210.8210.

[31]  T. Kimoto,et al.  Thermo-Optic Coefficients of 4H-SiC, GaN, and AlN for Ultraviolet to Infrared Regions up to 500 °C , 2012 .

[32]  Y. Nakano,et al.  Fabrication of Monolithic Integrated Series-Connected GaAs Photovoltaic Cells for Concentrator Applications , 2012 .

[33]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.

[34]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[35]  T. Kondo,et al.  Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide , 2009 .

[36]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[37]  R. C. Bradt,et al.  Thermal expansion of the hexagonal (4H) polytype of SiC , 1986 .