A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V

Sensing systems such as biomedical implants, infrastructure monitoring systems, and military surveillance units are constrained to consume only picowatts to nanowatts in standby and active mode, respectively. This tight power budget places ultra-low power demands on all building blocks in the systems. This work proposes a voltage reference for use in such ultra-low power systems, referred to as the 2T voltage reference, which has been demonstrated in silicon across three CMOS technologies. Prototype chips in 0.13 μm show a temperature coefficient of 16.9 ppm/°C (best) and line sensitivity of 0.033%/V, while consuming 2.22 pW in 1350 μm2. The lowest functional Vdd 0.5 V. The proposed design improves energy efficiency by 2 to 3 orders of magnitude while exhibiting better line sensitivity and temperature coefficient in less area, compared to other nanowatt voltage references. For process spread analysis, 49 dies are measured across two runs, showing the design exhibits comparable spreads in TC and output voltage to existing voltage references in the literature. Digital trimming is demonstrated, and assisted one temperature point digital trimming, guided by initial samples with two temperature point trimming, enables TC <; 50 ppm/°C and ±0.35% output precision across all 25 dies. Ease of technology portability is demonstrated with silicon measurement results in 65 nm, 0.13 μm, and 0.18 μm CMOS technologies.

[1]  David Blaauw,et al.  A cubic-millimeter energy-autonomous wireless intraocular pressure monitor , 2011, 2011 IEEE International Solid-State Circuits Conference.

[2]  K. Leung,et al.  A CMOS voltage reference based on weighted /spl Delta/V/sub GS/ for CMOS low-dropout linear regulators , 2003 .

[3]  A.P. Chandrakasan,et al.  A 65 nm Sub-$V_{t}$ Microcontroller With Integrated SRAM and Switched Capacitor DC-DC Converter , 2008, IEEE Journal of Solid-State Circuits.

[4]  Ka Nang Leung,et al.  A CMOS Voltage Reference Based on Weighted V GS for CMOS Low-Dropout Linear Regulators , 2001 .

[5]  B.K. Ahuja,et al.  A very high precision 500-nA CMOS floating-gate analog voltage reference , 2005, IEEE Journal of Solid-State Circuits.

[6]  P.R. Gray,et al.  A precision curvature-compensated CMOS bandgap reference , 1983, IEEE Journal of Solid-State Circuits.

[7]  G. Iannaccone,et al.  A Sub-1 V, 10 ppm/°C, Nanopower Voltage Reference Generator , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[8]  Kofi A. A. Makinwa,et al.  A single-trim CMOS bandgap reference with a 3σ inaccuracy of ±0.15% from -40°C to 125°C , 2010, ISSCC.

[9]  Tanaka Haruhiko,et al.  Sub-1-/spl mu/A dynamic reference voltage generator for battery-operated DRAMs , 1994 .

[10]  A.-J. Annema,et al.  Low-power bandgap references featuring DTMOSTs , 1999, Proceedings of the 24th European Solid-State Circuits Conference.

[11]  Kofi A. A. Makinwa,et al.  Effects of packaging and process spread on a mobility-based frequency reference in 0.16-μm CMOS , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[12]  Giuseppe de Vita,et al.  A Sub-1-V, 10 ppm/ $^{\circ}$C, Nanopower Voltage Reference Generator , 2007, IEEE Journal of Solid-State Circuits.

[13]  Peter R. Kinget,et al.  Voltage references for ultra-low supply voltages , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[14]  Bruno Allard,et al.  Review of fuse and antifuse solutions for advanced standard CMOS technologies , 2009, Microelectronics Journal.

[15]  G. Palumbo,et al.  A low-voltage low-power voltage reference based on subthreshold MOSFETs , 2003, IEEE J. Solid State Circuits.

[16]  A. Brokaw,et al.  A simple three-terminal IC bandgap reference , 1974 .

[17]  Stuart N. Wooters,et al.  A 2.6-µW sub-threshold mixed-signal ECG SoC , 2009, 2009 Symposium on VLSI Circuits.

[18]  Dennis Sylvester,et al.  Single stage static level shifter design for subthreshold to I/O voltage conversion , 2008, Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08).

[19]  K. Leung,et al.  A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device , 2002, IEEE J. Solid State Circuits.

[20]  R.A. Blauschild,et al.  A new NMOS temperature-stable voltage reference , 1978, IEEE Journal of Solid-State Circuits.

[21]  SeongHwan Cho,et al.  A 210 nW 29.3 ppm/°C 0.7 V voltage reference with a temperature range of −50 to 130 °C in 0.13 µm CMOS , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[22]  F. Lombardi,et al.  A CMOS subbandgap reference circuit with 1-v power supply voltage , 2004, IEEE Journal of Solid-State Circuits.

[23]  A. Boni,et al.  Op-amps and startup circuits for CMOS bandgap references with near 1-V supply , 2002, IEEE J. Solid State Circuits.

[24]  David Blaauw,et al.  A 0.5V 2.2pW 2-transistor voltage reference , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[25]  Giuseppe Iannaccone,et al.  A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference , 2011, IEEE Journal of Solid-State Circuits.

[26]  K. Sakui,et al.  A CMOS bandgap reference circuit with sub-1-V operation , 1999 .

[27]  Ke-Horng Chen,et al.  A 1-V, 16.9 ppm/$^{\circ}$C, 250 nA Switched-Capacitor CMOS Voltage Reference , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[28]  Naveen Verma,et al.  A 65nm Sub-Vt Microcontroller with Integrated SRAM and Switched-Capacitor DC-DC Converter , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[29]  H.J. Oguey,et al.  MOS voltage reference based on polysilicon gate work function difference , 1979, IEEE Journal of Solid-State Circuits.

[30]  Ralf Brederlow,et al.  An Ultra Low Power Bandgap Operational at Supply From 0.75 V , 2012, IEEE Journal of Solid-State Circuits.

[31]  Kai Strunz,et al.  A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting , 2010, IEEE Journal of Solid-State Circuits.

[32]  Anne-Johan Annema,et al.  A sub-1V bandgap voltage reference in 32nm FinFET technology , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[33]  Ke-Horng Chen,et al.  A 1V 16.9ppm/°C 250nA Switched-Capacitor CMOS Voltage Reference , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[34]  Anne-Johan Annema,et al.  A 0.0025mm2 bandgap voltage reference for 1.1V supply in standard 0.16μm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[35]  R.Y. Chang,et al.  A highly manufacturable 0.25 /spl mu/m multiple-Vt dual gate oxide CMOS process for logic/embedded IC foundry technology , 1998, 1998 Symposium on VLSI Technology Digest of Technical Papers (Cat. No.98CH36216).

[36]  David Blaauw,et al.  A modular 1mm3 die-stacked sensing platform with optical communication and multi-modal energy harvesting , 2012, 2012 IEEE International Solid-State Circuits Conference.

[37]  David Blaauw,et al.  Variability analysis of a digitally trimmable ultra-low power voltage reference , 2010, 2010 Proceedings of ESSCIRC.

[38]  Daeyeon Kim,et al.  The Phoenix Processor: A 30pW platform for sensor applications , 2008, 2008 IEEE Symposium on VLSI Circuits.

[39]  David Blaauw,et al.  Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[40]  R. J. Widlar,et al.  New developments in IC voltage regulators , 1970 .