A Flexible Architecture for Navigation Control of a Mobile Robot

In order to meet new mission requirements or to adapt environmental changes, robots perform a task switch or role switch. When a robot is required to perform a specific task, which is beyond its skills, it might need to request other robots' help. In order to improve the flexibility, we use the concept of a software mobile agent to design an architecture called Virtual Operator MultiAgent System (VOMAS). In VOMAS, intelligent agents, called a virtual operator (VO) and a robot agent (RA), work together to control a robot to fulfill a specific task. Each task is represented by a VO and the RA handles reactive control. Based on this architecture, VOMAS can perform the dynamic task switch to handle missions, which are not initially given. Two case studies, a wheelchair and formation control, are introduced for explaining our approach and to show the feasibility and effectiveness of dynamic task switch. Furthermore, VOMAS can be treated as a telerobotic architecture, and the network-load test shows that VOMAS requires less network load than direct control

[1]  Bernhard Nebel,et al.  CS Freiburg: coordinating robots for successful soccer playing , 2002, IEEE Trans. Robotics Autom..

[2]  Ahmed Karmouch,et al.  Mobile software agents: an overview , 1998, IEEE Commun. Mag..

[3]  Ronald C. Arkin,et al.  Learning to role-switch in multi-robot systems , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[4]  Maja J. Mataric,et al.  Sold!: auction methods for multirobot coordination , 2002, IEEE Trans. Robotics Autom..

[5]  Louise E. Moser,et al.  MAgNET: Mobile Agents for Networked Electronic Trading , 1999, IEEE Trans. Knowl. Data Eng..

[6]  Gian Pietro Picco,et al.  Understanding code mobility , 1998, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium.

[7]  Jacques Ferber,et al.  Multi-agent systems - an introduction to distributed artificial intelligence , 1999 .

[8]  Samuel Pierre,et al.  Mobile agents and their use for information retrieval: a brief overview and an elaborate case study , 2002, IEEE Netw..

[9]  A. Liu,et al.  Multiple teams for mobile robot formation control , 2004, Proceedings of the 2004 IEEE International Symposium on Intelligent Control, 2004..

[10]  Danny B. Lange,et al.  Programming and Deploying Java¿ Mobile Agents with Aglets¿ , 1998 .

[11]  Maja J. Mataric,et al.  A general algorithm for robot formations using local sensing and minimal communication , 2002, IEEE Trans. Robotics Autom..

[12]  Vijay Kumar,et al.  Dynamic role assignment for cooperative robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[13]  Panos J. Antsaklis,et al.  Special issue on hybrid systems: theory and applications a brief introduction to the theory and applications of hybrid systems , 2000, Proc. IEEE.

[14]  Q. Henry Wu,et al.  Mobile agents for remote control of distributed systems , 2004, IEEE Transactions on Industrial Electronics.

[15]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[16]  Ren C. Luo,et al.  Networked intelligent robots through the Internet: issues and opportunities , 2003, Proc. IEEE.

[17]  Tara A. Estlin,et al.  CLARAty and challenges of developing interoperable robotic software , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[18]  Martin Hägele,et al.  Dependable Interaction with an Intelligent Home Care Robot , 2001 .

[19]  Vijay Kumar,et al.  Hierarchical modeling and analysis of embedded systems , 2003, Proc. IEEE.

[20]  Barbara Messing,et al.  An Introduction to MultiAgent Systems , 2002, Künstliche Intell..

[21]  Timothy W. Finin,et al.  KQML as an agent communication language , 1994, CIKM '94.

[22]  Luis M. Camarinha-Matos,et al.  Intelligent mobile agents in elderly care , 1999, Robotics Auton. Syst..

[23]  Julio Rosenblatt,et al.  DAMN: a distributed architecture for mobile navigation , 1997, J. Exp. Theor. Artif. Intell..

[24]  E. Gat On Three-Layer Architectures , 1997 .

[25]  Ichiro Satoh,et al.  Building reusable mobile agents for network management , 2003, IEEE Trans. Syst. Man Cybern. Part C.

[26]  Ren C. Luo,et al.  Special issue on networked intelligent robots through the internet [Scanning the Issue] , 2003 .

[27]  Alan Liu,et al.  Multiagent-Based Multi-team Formation Control for Mobile Robots , 2005, J. Intell. Robotic Syst..

[28]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[29]  Manuela M. Veloso,et al.  Task Decomposition, Dynamic Role Assignment, and Low-Bandwidth Communication for Real-Time Strategic Teamwork , 1999, Artif. Intell..

[30]  Danny B. Lange,et al.  Seven good reasons for mobile agents , 1999, CACM.

[31]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant multirobot cooperation , 1998, IEEE Trans. Robotics Autom..

[32]  Luis M. Camarinha-Matos,et al.  A Mobile Agents Approach to Virtual Laboratories and Remote Supervision , 2002, J. Intell. Robotic Syst..

[33]  Nidhi Kalra,et al.  Hoplites: A Market-Based Framework for Planned Tight Coordination in Multirobot Teams , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.