The forbidden pattern approach to concatenation hierarchies
暂无分享,去创建一个
[1] Howard Straubing,et al. FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .
[2] Bernd Borchert,et al. On the Acceptance Power of Regular Languages , 1994, Theor. Comput. Sci..
[3] Heribert Vollmer,et al. The Chain Method to Separate Counting Classes , 1998, Theory of Computing Systems.
[4] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[5] Christian Glaßer,et al. Decidable Hierarchies of Starfree Languages , 2000, FSTTCS.
[6] S C Kleene,et al. Representation of Events in Nerve Nets and Finite Automata , 1951 .
[7] Jean-Éric Pin. Bridges for Concatenation Hierarchies , 1998, ICALP.
[8] Thomas Wilke,et al. Classifying Discrete Temporal Properties , 1999, STACS.
[9] Christian Glaßer,et al. The Boolean Structure of Dot-Depth One , 2001, J. Autom. Lang. Comb..
[10] Mustapha Arfi. Opérations polynomiales et hiérarchies de concaténation , 1991, Theor. Comput. Sci..
[11] Jacques Stern,et al. Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..
[12] Thomas Wilke,et al. Temporal Logic and Semidirect Products: An Effective Characterization of the Until Hierarchy , 2001, SIAM J. Comput..
[13] Carl A. Gunter,et al. In handbook of theoretical computer science , 1990 .
[14] Heribert Vollmer,et al. Uniformly Defining Complexity Classes of Functions , 1998, STACS.
[15] Klaus W. Wagner,et al. The Boolean Hierarchy over Level 1/2 of the Straubing-Therien Hierarchy , 1998, ArXiv.
[16] Janusz A. Brzozowski,et al. Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..
[17] Heribert Vollmer,et al. Lindström Quantifiers and Leaf Language Definability , 1996, Int. J. Found. Comput. Sci..
[18] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[19] K. Hashiguchi,et al. Representation Theorems on Regular Languages , 1983, J. Comput. Syst. Sci..
[20] Dung T. Huynh,et al. Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..
[21] Heinz Schmitz. Restricted Temporal Logic and Deterministic Languages , 2000, J. Autom. Lang. Comb..
[22] Imre Simon,et al. Piecewise testable events , 1975, Automata Theory and Formal Languages.
[23] Francine Blanchet-Sadri,et al. Some Logical Characterizations of the Dot-Depth Hierarchy and Applications , 1995, J. Comput. Syst. Sci..
[24] Janusz A. Brzozowski,et al. Characterizations of locally testable events , 1973, Discret. Math..
[25] Neil Immerman. Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..
[26] Francine Blanchet-Sadri,et al. Equations and Monoid Varieties of Dot-Depth One and Two , 1994, Theor. Comput. Sci..
[27] E. Allen Emerson,et al. Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[28] Jean-Éric Pin,et al. Syntactic Semigroups , 1997, Handbook of Formal Languages.
[29] Dominique Perrin,et al. On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..
[30] Graham Higman,et al. Ordering by Divisibility in Abstract Algebras , 1952 .
[31] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[32] Denis Thérien,et al. Programs over semigroups of dot-depth one , 2000, Theor. Comput. Sci..
[33] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[34] Pascal Weil,et al. Some results on the dot-depth hierarchy , 1993 .
[35] Imre Simon,et al. Factorization Forests of Finite Height , 1990, Theor. Comput. Sci..
[36] Thomas Schwentick,et al. On the power of polynomial time bit-reductions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.
[37] Seinosuke Toda,et al. PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..
[38] Christian Glaßer,et al. Concatenation Hierarchies and Forbidden Patterns , 2000 .
[39] Christian Glaßer. A Normalform for Classes of Concatenation Hierarchies , 1998 .
[40] Mustapha Arfi. Polynomial Operations on Rational Languages , 1987, STACS.
[41] Denis Thérien,et al. Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..
[42] N. Vereshchagin. RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS IN THE POLYNOMIAL THEORY OF ALGORITHMS , 1994 .
[43] Sheng Yu,et al. Alternating finite automata and star-free languages , 2000, Theor. Comput. Sci..
[44] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[45] Denis Thérien,et al. Graph congruences and wreath products , 1985 .
[46] Kousha Etessami,et al. First-Order Logic with Two Variables and Unary Temporal Logic , 2002, Inf. Comput..
[47] Jacques Stern,et al. Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..
[48] Frank Stephan,et al. On Existentially First-Order Definable Languages and Their Relation to NP , 1998, ICALP.
[49] J. Pin,et al. THE WREATH PRODUCT PRINCIPLE FOR ORDERED SEMIGROUPS , 2002 .
[50] Juris Hartmanis,et al. The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..
[51] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[52] Kousha Etessami,et al. An Until hierarchy for temporal logic , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
[53] Heinz Schmitz. Boolean Hierarchies inside Dot – Depth One , 1999 .
[54] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[55] Robert Knast,et al. A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..
[56] Howard Straubing,et al. A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..
[57] Pierluigi Crescenzi,et al. A Uniform Approach to Define Complexity Classes , 1992, Theor. Comput. Sci..
[58] Danièle Beauquier,et al. Factors of Words , 1989, ICALP.
[59] Rolf Niedermeier,et al. Unambiguous Computations and Locally Definable Acceptance Types , 1998, Theor. Comput. Sci..
[60] Victor L. Selivanov. A Logical Approach to Decidability of Hierarchies of Regular Star-Free Languages , 2001, STACS.
[61] Janos Simon,et al. Space-bounded hierarchies and probabilistic computations , 1982, STOC '82.
[62] Wolfgang Thomas. An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .
[63] Dominique Perrin,et al. Finite Automata , 1958, Philosophy.
[64] Johan Anthory Willem Kamp,et al. Tense logic and the theory of linear order , 1968 .
[65] Saharon Shelah,et al. On the temporal analysis of fairness , 1980, POPL '80.
[66] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[67] Thomas Wilke,et al. Over Words, Two Variables Are as Powerful as One Quantiier Alternation: Fo 2 = 2 \ 2 , 1998 .
[68] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[69] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[70] Klaus W. Wagner,et al. Bounded Query Classes , 1990, SIAM J. Comput..
[71] Faith Ellen,et al. Languages of R-Trivial Monoids , 1980, J. Comput. Syst. Sci..
[72] Denis Thérien,et al. Logspace and Logtime Leaf Languages , 1996, Inf. Comput..
[73] Wolfgang Thomas,et al. Languages, Automata, and Logic , 1997, Handbook of Formal Languages.
[74] Howard Straubing,et al. Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..