The forbidden pattern approach to concatenation hierarchies

[1]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[2]  Bernd Borchert,et al.  On the Acceptance Power of Regular Languages , 1994, Theor. Comput. Sci..

[3]  Heribert Vollmer,et al.  The Chain Method to Separate Counting Classes , 1998, Theory of Computing Systems.

[4]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[5]  Christian Glaßer,et al.  Decidable Hierarchies of Starfree Languages , 2000, FSTTCS.

[6]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[7]  Jean-Éric Pin Bridges for Concatenation Hierarchies , 1998, ICALP.

[8]  Thomas Wilke,et al.  Classifying Discrete Temporal Properties , 1999, STACS.

[9]  Christian Glaßer,et al.  The Boolean Structure of Dot-Depth One , 2001, J. Autom. Lang. Comb..

[10]  Mustapha Arfi Opérations polynomiales et hiérarchies de concaténation , 1991, Theor. Comput. Sci..

[11]  Jacques Stern,et al.  Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..

[12]  Thomas Wilke,et al.  Temporal Logic and Semidirect Products: An Effective Characterization of the Until Hierarchy , 2001, SIAM J. Comput..

[13]  Carl A. Gunter,et al.  In handbook of theoretical computer science , 1990 .

[14]  Heribert Vollmer,et al.  Uniformly Defining Complexity Classes of Functions , 1998, STACS.

[15]  Klaus W. Wagner,et al.  The Boolean Hierarchy over Level 1/2 of the Straubing-Therien Hierarchy , 1998, ArXiv.

[16]  Janusz A. Brzozowski,et al.  Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..

[17]  Heribert Vollmer,et al.  Lindström Quantifiers and Leaf Language Definability , 1996, Int. J. Found. Comput. Sci..

[18]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[19]  K. Hashiguchi,et al.  Representation Theorems on Regular Languages , 1983, J. Comput. Syst. Sci..

[20]  Dung T. Huynh,et al.  Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..

[21]  Heinz Schmitz Restricted Temporal Logic and Deterministic Languages , 2000, J. Autom. Lang. Comb..

[22]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[23]  Francine Blanchet-Sadri,et al.  Some Logical Characterizations of the Dot-Depth Hierarchy and Applications , 1995, J. Comput. Syst. Sci..

[24]  Janusz A. Brzozowski,et al.  Characterizations of locally testable events , 1973, Discret. Math..

[25]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[26]  Francine Blanchet-Sadri,et al.  Equations and Monoid Varieties of Dot-Depth One and Two , 1994, Theor. Comput. Sci..

[27]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[28]  Jean-Éric Pin,et al.  Syntactic Semigroups , 1997, Handbook of Formal Languages.

[29]  Dominique Perrin,et al.  On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..

[30]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[31]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[32]  Denis Thérien,et al.  Programs over semigroups of dot-depth one , 2000, Theor. Comput. Sci..

[33]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[34]  Pascal Weil,et al.  Some results on the dot-depth hierarchy , 1993 .

[35]  Imre Simon,et al.  Factorization Forests of Finite Height , 1990, Theor. Comput. Sci..

[36]  Thomas Schwentick,et al.  On the power of polynomial time bit-reductions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[37]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[38]  Christian Glaßer,et al.  Concatenation Hierarchies and Forbidden Patterns , 2000 .

[39]  Christian Glaßer A Normalform for Classes of Concatenation Hierarchies , 1998 .

[40]  Mustapha Arfi Polynomial Operations on Rational Languages , 1987, STACS.

[41]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[42]  N. Vereshchagin RELATIVIZABLE AND NONRELATIVIZABLE THEOREMS IN THE POLYNOMIAL THEORY OF ALGORITHMS , 1994 .

[43]  Sheng Yu,et al.  Alternating finite automata and star-free languages , 2000, Theor. Comput. Sci..

[44]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[45]  Denis Thérien,et al.  Graph congruences and wreath products , 1985 .

[46]  Kousha Etessami,et al.  First-Order Logic with Two Variables and Unary Temporal Logic , 2002, Inf. Comput..

[47]  Jacques Stern,et al.  Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..

[48]  Frank Stephan,et al.  On Existentially First-Order Definable Languages and Their Relation to NP , 1998, ICALP.

[49]  J. Pin,et al.  THE WREATH PRODUCT PRINCIPLE FOR ORDERED SEMIGROUPS , 2002 .

[50]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[51]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[52]  Kousha Etessami,et al.  An Until hierarchy for temporal logic , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[53]  Heinz Schmitz Boolean Hierarchies inside Dot – Depth One , 1999 .

[54]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[55]  Robert Knast,et al.  A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..

[56]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[57]  Pierluigi Crescenzi,et al.  A Uniform Approach to Define Complexity Classes , 1992, Theor. Comput. Sci..

[58]  Danièle Beauquier,et al.  Factors of Words , 1989, ICALP.

[59]  Rolf Niedermeier,et al.  Unambiguous Computations and Locally Definable Acceptance Types , 1998, Theor. Comput. Sci..

[60]  Victor L. Selivanov A Logical Approach to Decidability of Hierarchies of Regular Star-Free Languages , 2001, STACS.

[61]  Janos Simon,et al.  Space-bounded hierarchies and probabilistic computations , 1982, STOC '82.

[62]  Wolfgang Thomas An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .

[63]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[64]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[65]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[66]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[67]  Thomas Wilke,et al.  Over Words, Two Variables Are as Powerful as One Quantiier Alternation: Fo 2 = 2 \ 2 , 1998 .

[68]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[69]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[70]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[71]  Faith Ellen,et al.  Languages of R-Trivial Monoids , 1980, J. Comput. Syst. Sci..

[72]  Denis Thérien,et al.  Logspace and Logtime Leaf Languages , 1996, Inf. Comput..

[73]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[74]  Howard Straubing,et al.  Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..