Neural Argument Generation Augmented with Externally Retrieved Evidence

High quality arguments are essential elements for human reasoning and decision-making processes. However, effective argument construction is a challenging task for both human and machines. In this work, we study a novel task on automatically generating arguments of a different stance for a given statement. We propose an encoder-decoder style neural network-based argument generation model enriched with externally retrieved evidence from Wikipedia. Our model first generates a set of talking point phrases as intermediate representation, followed by a separate decoder producing the final argument based on both input and the keyphrases. Experiments on a large-scale dataset collected from Reddit show that our model constructs arguments with more topic-relevant content than popular sequence-to-sequence generation models according to automatic evaluation and human assessments.

[1]  S. T. Buckland,et al.  Computer-Intensive Methods for Testing Hypotheses. , 1990 .

[2]  Eduard H. Hovy,et al.  Automated Discourse Generation Using Discourse Structure Relations , 1993, Artif. Intell..

[3]  Chris Reed,et al.  An Architecture fro Argumentative Dialogue Planning , 1996, FAPR.

[4]  Blai Bonet,et al.  Arguing for Decisions: A Qualitative Model of Decision Making , 1996, UAI.

[5]  James P. Byrnes,et al.  The Nature and Development of Decision-making: A Self-regulation Model , 1998 .

[6]  Chris Reed,et al.  The Role of Saliency in Generating Natural Language Arguments , 1999, IJCAI.

[7]  Johanna D. Moore,et al.  A strategy for generating evaluative arguments , 2000, INLG.

[8]  Eduard H. Hovy,et al.  The Automated Acquisition of Topic Signatures for Text Summarization , 2000, COLING.

[9]  Ingrid Zukerman,et al.  Using Argumentation Strategies in Automated Argument Generation , 2000, INLG.

[10]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[11]  S. Albrecht Whose voice is heard in online deliberation?: A study of participation and representation in political debates on the internet , 2006 .

[12]  G. Roberts Computer Intensive Methods , 2007 .

[13]  Anja Belz,et al.  Automatic generation of weather forecast texts using comprehensive probabilistic generation-space models , 2008, Natural Language Engineering.

[14]  Marie-Francine Moens,et al.  Argumentation mining: the detection, classification and structure of arguments in text , 2009, ICAIL.

[15]  Dan Klein,et al.  A Simple Domain-Independent Probabilistic Approach to Generation , 2010, EMNLP.

[16]  Leo Wanner,et al.  Content selection from an ontology-based knowledge base for the generation of football summaries , 2011, ENLG.

[17]  Claire Cardie,et al.  Facilitative moderation for online participation in eRulemaking , 2012, dg.o '12.

[18]  Larry P. Heck,et al.  Learning deep structured semantic models for web search using clickthrough data , 2013, CIKM.

[19]  Alon Lavie,et al.  Meteor Universal: Language Specific Translation Evaluation for Any Target Language , 2014, WMT@ACL.

[20]  Nina Wacholder,et al.  Analyzing Argumentative Discourse Units in Online Interactions , 2014, ArgMining@ACL.

[21]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[22]  Claire Cardie,et al.  Identifying Appropriate Support for Propositions in Online User Comments , 2014, ArgMining@ACL.

[23]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[24]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[25]  Naoaki Okazaki,et al.  A Computational Approach for Generating Toulmin Model Argumentation , 2015, ArgMining@HLT-NAACL.

[26]  Mitesh M. Khapra,et al.  Show Me Your Evidence - an Automatic Method for Context Dependent Evidence Detection , 2015, EMNLP.

[27]  David Vandyke,et al.  Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems , 2015, EMNLP.

[28]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[29]  Makoto Iwayama,et al.  End-to-end Argument Generation System in Debating , 2015, ACL.

[30]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[31]  Zoubin Ghahramani,et al.  A Theoretically Grounded Application of Dropout in Recurrent Neural Networks , 2015, NIPS.

[32]  Gholamreza Haffari,et al.  A Latent Variable Recurrent Neural Network for Discourse Relation Language Models , 2016, ArXiv.

[33]  Alexander M. Rush,et al.  Sequence-to-Sequence Learning as Beam-Search Optimization , 2016, EMNLP.

[34]  Quoc V. Le,et al.  Multi-task Sequence to Sequence Learning , 2015, ICLR.

[35]  Lu Wang,et al.  Neural Network-Based Abstract Generation for Opinions and Arguments , 2016, NAACL.

[36]  Matthew R. Walter,et al.  What to talk about and how? Selective Generation using LSTMs with Coarse-to-Fine Alignment , 2015, NAACL.

[37]  Jason Weston,et al.  Reading Wikipedia to Answer Open-Domain Questions , 2017, ACL.

[38]  Alexander M. Rush,et al.  Challenges in Data-to-Document Generation , 2017, EMNLP.

[39]  Lu Wang,et al.  Winning on the Merits: The Joint Effects of Content and Style on Debate Outcomes , 2017, TACL.

[40]  Lu Wang,et al.  Understanding and Detecting Diverse Supporting Arguments on Controversial Issues , 2017, ACL.

[41]  Iryna Gurevych,et al.  Neural End-to-End Learning for Computational Argumentation Mining , 2017, ACL.

[42]  Xinyu Hua,et al.  Understanding and Detecting Supporting Arguments of Diverse Types , 2017 .

[43]  Claire Cardie,et al.  Argument Mining with Structured SVMs and RNNs , 2017, ACL.

[44]  Benno Stein,et al.  Building an Argument Search Engine for the Web , 2017, ArgMining@EMNLP.