Influence of the anion on the spectroscopy and scintillation mechanism in pure and Ce3+-doped K2LaX5 and LaX3 (X=Cl, Br, I)

The optical properties and scintillation mechanism in pure and Ce 31 -doped K2LaX5 and LaX3 have been determined under x-ray, g-ray, vacuum ultraviolet light, and synchrotron radiation excitation. Special attention is paid to the influence of anions X5Cl 2 ,B r 2 , and I 2 , and a comparison is made with properties of pure and Eu 21 -doped KX compounds. The energies of the 5d excited states of Ce 31 have been determined, and the total crystal field splitting and the centroid shift are discussed. An excitation across the band gap creates a combination of self-trapped exciton ~STE! and Ce 31 emission. These emissions are often anticorrelated when temperature or Ce 31 concentration is changed. Their ratio is related to the STE mobility and STE creation rate. Clear trends in the optical properties and scintillation mechanism are observed along the halide series.

[1]  D. A. Patterson,et al.  Evidence for a Triplet State of the Self-Trapped Exciton in Alkali-Halide Crystals , 1967 .

[2]  R. H. Stulen,et al.  Relation between the Stokes shift of excitons in alkali halides and the energy of diffusion ofVKcenters , 1975 .

[3]  T. Iida,et al.  Static Properties of the Self‐Trapped Hole in Simple Cubic Cesium Halides , 1976 .

[4]  A. Stoneham,et al.  The self-trapped hole in caesium halides , 1977 .

[5]  F. López Optical Absorption, Emission, and Excitation Spectra of Eu2+in the Alkali Halides , 1981 .

[6]  F. López,et al.  Optical absorption and fluorescence investigation of the precipitated phases of Eu2+ in KBr single crystals☆ , 1982 .

[7]  G. Meyer,et al.  Ternäre Halogenide der Seltenen Erden vom Typ A2MX5 (A = K, In, NH4, Rb, Cs; X = Cl, Br, I) , 1985 .

[8]  R. T. Williams,et al.  The self-trapped exciton , 1990 .

[9]  L. Chen,et al.  The Hopping motion of the off-center self-trapped excitons in alkali halide crystals , 1990 .

[10]  G. Zimmerer Status report on luminescence investigations with synchrotron radiation at HASYLAB , 1991 .

[11]  Ueno,et al.  Stability of the wurtzite-type structure under high pressure: GaN and InN. , 1994, Physical review. B, Condensed matter.

[12]  Berman,et al.  Optical spectroscopy and scintillation mechanisms of CexLa1-xF3. , 1994, Physical review. B, Condensed matter.

[13]  A. Lempicki,et al.  Ce-doped scintillators: LSO and LuAP , 1998 .

[14]  P. Dorenbos,et al.  Scintillation and luminescence properties of Ce3+ doped K2LaCl5 , 1999 .

[15]  P. Dorenbos,et al.  Optical and scintillation properties of cerium-doped LaCl3, LuBr3 and LuCl3 , 1999 .

[16]  W. Drozdowski,et al.  Radioluminescence and recombination processes in BaF2:Ce , 2000 .

[17]  K. Krämer,et al.  Scintillation properties of LaCl/sub 3/:Ce/sup 3+/ crystals: fast, efficient, and high-energy resolution scintillators , 2000 .

[18]  P. Dorenbos,et al.  Scintillation properties of LaCl3:Ce3+ crystals: fast, efficient and high-energy-resolution scintillators , 2002 .

[19]  P. Rodnyi,et al.  Experimental and theoretical study of the spectroscopic properties of Ce3+ doped LaCl3 single crystals , 2000 .

[20]  P. Dorenbos,et al.  High-energy-resolution scintillator: Ce3+ activated LaBr3 , 2000 .

[21]  A. Vasil’ev,et al.  Cerium-doped fluorescent and scintillating ionic crystals , 2001 .

[22]  P. Dorenbos Crystal field splitting of lanthanide 4fn−15d-levels in inorganic compounds , 2002 .

[23]  P. Dorenbos,et al.  The scintillation mechanism in LaCl3:Ce3+ , 2003 .