Sequential Convex Programming Methods for Solving Nonlinear Optimization Problems with DC constraints

This paper investigates the relation between sequential convex programming (SCP) as, e.g., defined in [24] and DC (difference of two convex functions) programming. We first present an SCP algorithm for solving nonlinear optimization problems with DC constraints and prove its convergence. Then we combine the proposed algorithm with a relaxation technique to handle inconsistent linearizations. Numerical tests are performed to investigate the behaviour of the class of algorithms.

[1]  Masao Fukushima,et al.  Successive Linearization Methods for Nonlinear Semidefinite Programs , 2005, Comput. Optim. Appl..

[2]  Gert R. G. Lanckriet,et al.  On the Convergence of the Concave-Convex Procedure , 2009, NIPS.

[3]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[4]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[5]  Gert R. G. Lanckriet,et al.  Sparse eigen methods by D.C. programming , 2007, ICML '07.

[6]  W. Gander,et al.  A D.C. OPTIMIZATION ALGORITHM FOR SOLVING THE TRUST-REGION SUBPROBLEM∗ , 1998 .

[7]  M. Laghdir OPTIMALITY CONDITIONS IN DC-CONSTRAINED OPTIMIZATION , 2005 .

[8]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[9]  A. Ostrowski Solution of equations and systems of equations , 1967 .

[10]  R. Horst,et al.  DC Programming: Overview , 1999 .

[11]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[12]  Hans Bock,et al.  Recent Progress in the Development of Algorithms and Software for Large Scale Parameter Estimation Problems in Chemical Reaction Systems , 1986 .

[13]  Thomas Hofmann,et al.  Kernel Methods for Missing Variables , 2005, AISTATS.

[14]  Moritz Diehl,et al.  Local Convergence of Sequential Convex Programming for Nonconvex Optimization , 2010 .

[15]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[16]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[17]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[18]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[19]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[20]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[21]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[22]  Alan L. Yuille,et al.  The Concave-Convex Procedure , 2003, Neural Computation.

[23]  Florian Jarre,et al.  Two theoretical results for sequential semidefinite programming , 2008 .

[24]  Hans Joachim Ferreau,et al.  Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation , 2009 .

[25]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[26]  J. Hiriart-Urruty Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions , 1985 .