Germ-line variation at a functional p53 binding site increases susceptibility to breast cancer development

[1]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[2]  M. Thun,et al.  Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2 , 2009, Nature Genetics.

[3]  Julian Peto,et al.  Association of ESR1 gene tagging SNPs with breast cancer risk. , 2009, Human molecular genetics.

[4]  E. Liu,et al.  Evolution of the mammalian transcription factor binding repertoire via transposable elements. , 2008, Genome research.

[5]  Hongbing Shen,et al.  MDM2 Promoter Polymorphism SNP309 Contributes to Tumor Susceptibility: Evidence from 21 Case-Control Studies , 2007, Cancer Epidemiology Biomarkers & Prevention.

[6]  Lester L. Peters,et al.  Genome-wide association study identifies novel breast cancer susceptibility loci , 2007, Nature.

[7]  G. Wray The evolutionary significance of cis-regulatory mutations , 2007, Nature Reviews Genetics.

[8]  D. Menendez,et al.  A Single-Nucleotide Polymorphism in a Half-Binding Site Creates p53 and Estrogen Receptor Control of Vascular Endothelial Growth Factor Receptor 1 , 2007, Molecular and Cellular Biology.

[9]  R. Shaw,et al.  Glucose metabolism and cancer. , 2006, Current opinion in cell biology.

[10]  B. Viollet,et al.  5′-AMP-Activated Protein Kinase (AMPK) Is Induced by Low-Oxygen and Glucose Deprivation Conditions Found in Solid-Tumor Microenvironments , 2006, Molecular and Cellular Biology.

[11]  T. Hudson,et al.  Elucidating cis- and trans-regulatory variation using genetical genomics. , 2006, Trends in genetics : TIG.

[12]  M. Murphy,et al.  Polymorphisms in the p53 pathway , 2006, Oncogene.

[13]  Z. Weng,et al.  A Global Map of p53 Transcription-Factor Binding Sites in the Human Genome , 2006, Cell.

[14]  E. Liu,et al.  Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. , 2005, Cancer research.

[15]  P. Hall,et al.  An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Russell G. Jones,et al.  AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. , 2005, Molecular cell.

[17]  Julian C. Knight,et al.  Regulatory polymorphisms underlying complex disease traits , 2005, Journal of Molecular Medicine.

[18]  A. Levine,et al.  A Single Nucleotide Polymorphism in the MDM2 Promoter Attenuates the p53 Tumor Suppressor Pathway and Accelerates Tumor Formation in Humans , 2004, Cell.

[19]  Thomas J. Hudson,et al.  Cis-Acting Regulatory Variation in the Human Genome , 2004, Science.

[20]  Lewis C Cantley,et al.  The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Cawley,et al.  Unbiased Mapping of Transcription Factor Binding Sites along Human Chromosomes 21 and 22 Points to Widespread Regulation of Noncoding RNAs , 2004, Cell.

[22]  K. Inoki,et al.  TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival , 2003, Cell.

[23]  R. Eeles,et al.  Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. , 2003, Cancer research.

[24]  Xin Lu,et al.  Live or let die: the cell's response to p53 , 2002, Nature Reviews Cancer.

[25]  P. Farnham,et al.  Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. , 2002, Methods.

[26]  P. Farnham,et al.  Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. , 2002, Methods.

[27]  M. King,et al.  Evolution at two levels in humans and chimpanzees. , 1975, Science.