Discrete Deterministic Modelling of Autonomous Missiles Salvos
暂无分享,去创建一个
[1] Levent Kandiller,et al. Semi-dynamic modelling of heterogeneous land combat , 2006, J. Oper. Res. Soc..
[2] Jing Chen,et al. Tactical Trajectory Planning for Stealth Unmanned Aerial Vehicle to Win the Radar Game , 2012 .
[3] A.P.J. Abdul Kalam. Future Operational Scenario for Antitank Guided Missile Systems , 1995 .
[4] G. C. McIntosh,et al. Incorporating fractal concepts into equations of attrition for military conflicts , 2008, J. Oper. Res. Soc..
[5] Eduardo González,et al. Spatial Lanchester models , 2011, Eur. J. Oper. Res..
[6] Michael J. Armstrong,et al. A Stochastic Salvo Model for Naval Surface Combat , 2005, Oper. Res..
[7] Ken R. McNaught. The effects of splitting exponential stochastic Lanchester battles , 1999, J. Oper. Res. Soc..
[8] N. J. MacKay,et al. Lanchester models for mixed forces with semi-dynamical target allocation , 2009, J. Oper. Res. Soc..
[9] J. S. Przemieniecki. Mathematical methods in defense analyses , 1994 .
[10] M K Lauren. Firepower concentration in cellular automaton combat models—an alternative to Lanchester , 2002, J. Oper. Res. Soc..
[11] Hsi-Mei Chen,et al. An Inverse Problem of the Lanchester Square Law in Estimating Time-Dependent Attrition Coefficients , 2002, Oper. Res..
[12] D. J. Kaup,et al. The Lanchester (n, 1) problem , 2005, J. Oper. Res. Soc..
[13] Georges Zaccour,et al. A Note on Feedback Sequential Equilibria in a Lanchester Model with Empirical Application , 2006, Manag. Sci..
[14] Jau-yeu Menq,et al. Conceptual Lanchester-type Decapitation Warfare Modelling , 2007 .
[15] Hsi-Mei Chen,et al. A non-linear inverse Lanchester square law problem in estimating the force-dependent attrition coefficients , 2007, Eur. J. Oper. Res..