Matching cut: Kernelization, single-exponential time FPT, and exact exponential algorithms

Abstract In a graph, a matching cut is an edge cut that is a matching. Matching Cut , which is known to be NP-complete, is the problem of deciding whether or not a given graph  G has a matching cut. In this paper we show that Matching Cut admits a quadratic-vertex kernel for the parameter distance to cluster and a linear-vertex kernel for the parameter distance to clique. We further provide an O ∗ ( 2 dc ( G ) ) -time and an O ∗ ( 2 d c ¯ ( G ) ) -time FPT algorithm for Matching Cut , where dc ( G ) and d c ¯ ( G ) are the distance to cluster and distance to co-cluster, respectively. We also improve the running time of the best known branching algorithm to solve Matching Cut from O ∗ ( 1 . 414 3 n ) to O ∗ ( 1 . 307 1 n ) where  n is the number of vertices in  G . Moreover, we point out that, unless NP ⊆ coNP ∕ poly , Matching Cut does not admit a polynomial kernel when parameterized simultaneously by treewidth, the number of edges crossing the cut, and the maximum degree of  G .

[1]  Ronald L. Graham,et al.  ON PRIMITIVE GRAPHS AND OPTIMAL VERTEX ASSIGNMENTS , 1970 .

[2]  Van Bang Le,et al.  A complexity dichotomy for Matching Cut in (bipartite) graphs of fixed diameter , 2018, Theor. Comput. Sci..

[3]  Anjeneya Swami Kare,et al.  On Structural Parameterizations of the Matching Cut Problem , 2017, COCOA.

[4]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2013, CACM.

[5]  Paul Bonsma The complexity of the matching-cut problem for planar graphs and other graph classes , 2009 .

[6]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[7]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[8]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[9]  Mieczyslaw Borowiecki,et al.  Matching cutsets in graphs of diameter 2 , 2008, Theor. Comput. Sci..

[10]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[11]  Augustine M. Moshi Matching cutsets in graphs , 1989, J. Graph Theory.

[12]  Vasek Chvátal,et al.  Recognizing decomposable graphs , 1984, J. Graph Theory.

[13]  Maurizio Patrignani,et al.  The Complexity of the Matching-Cut Problem , 2001, WG.

[14]  Arthur M. Farley,et al.  Networks immune to isolated line failures , 1982, Networks.

[15]  Van Bang Le,et al.  Matching Cut in Graphs with Large Minimum Degree , 2020, Algorithmica.

[16]  Timon Hertli 3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General , 2014, SIAM J. Comput..

[17]  Dieter Kratsch,et al.  Algorithms solving the Matching Cut problem , 2015, Theor. Comput. Sci..

[18]  Marcin Pilipczuk,et al.  A Fast Branching Algorithm for Cluster Vertex Deletion , 2013, Theory of Computing Systems.

[19]  Van Bang Le,et al.  On stable cutsets in line graphs , 2003, Theor. Comput. Sci..

[20]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 2005, JACM.

[21]  Ignasi Sau,et al.  Finding Cuts of Bounded Degree: Complexity, FPT and Exact Algorithms, and Kernelization , 2019, Algorithmica.

[22]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[23]  Barry O'Sullivan,et al.  Finding small separators in linear time via treewidth reduction , 2011, TALG.

[24]  Sixue Liu,et al.  Chain, Generalization of Covering Code, and Deterministic Algorithm for k-SAT , 2018, ICALP.