Refutation of Sallé's Longstanding Conjecture

The ⁄-calculus possesses a strong notion of extensionality, called “the Ê-rule”, which has been the subject of many investigations. It is a longstanding open problem whether the equivalence obtained by closing the theory of Böhm trees under the Ê-rule is strictly included in Morris’s original observational theory, as conjectured by Sallé in the seventies. In a recent work, Breuvart et al. have shown that Morris’s theory satisfies the Ê-rule. In this paper we demonstrate that the two aforementioned theories actually coincide, thus disproving Sallé’s conjecture. 1998 ACM Subject Classification F.4.1 Mathematical Logic

[1]  Michael M. Richter,et al.  Computer Science Logic CSL'87 , 1988 .

[2]  Hendrik Pieter Barendregt,et al.  Some extensional term models for combinatory logics and l - calculi , 1971 .

[3]  Giulio Manzonetto,et al.  Relational Graph Models, Taylor Expansion and Extensionality , 2014, MFPS.

[4]  Pietro Di Gianantonio,et al.  Game Semantics for Untyped λβη-Calculus , 1999 .

[5]  Torben Æ. Mogensen Efficient self-interpretation in lambda calculus , 1992, Journal of Functional Programming.

[6]  Andrew Polonsky Axiomatizing the Quote , 2011, CSL.

[7]  Jens Palsberg,et al.  Breaking through the normalization barrier: a self-interpreter for f-omega , 2016, POPL.

[8]  Paula Severi,et al.  An Extensional Böhm Model , 2002, RTA.

[9]  Richard Statman,et al.  The Omega Rule is ? 1 1 -Complete in the ?-Calculus , 2007 .

[10]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[11]  A. Polonsky,et al.  New Results on Morris's Observational Theory , 2016 .

[12]  Paula Severi,et al.  The infinitary lambda calculus of the infinite eta Böhm trees , 2017, Math. Struct. Comput. Sci..

[13]  Flavien Breuvart On the characterization of models of H , 2014, CSL-LICS.

[14]  M. Coppo,et al.  Functional Characterization of Some Semantic Equalities inside Lambda-Calculus , 1979, ICALP.

[15]  Giulio Manzonetto,et al.  A General Class of Models of H* , 2009, MFCS.

[16]  Jan A. Bergstra,et al.  Degrees of sensible lambda theories , 1978, Journal of Symbolic Logic.

[17]  P. Sallé Une extension de la theorie des types en λ-calcul , 1978 .

[18]  Thomas Given-Wilson,et al.  A combinatory account of internal structure , 2011, The Journal of Symbolic Logic.

[19]  M. Coppo Type theories, normal forms, and D?-lambda-models*1 , 1987 .

[20]  Christopher P. Wadsworth,et al.  The Relation Between Computational and Denotational Properties for Scott's Dinfty-Models of the Lambda-Calculus , 1976, SIAM J. Comput..

[21]  James H. Morris,et al.  Lambda-calculus models of programming languages. , 1969 .