A rational Arnoldi process with applications
暂无分享,去创建一个
Zhengsheng Wang | Lothar Reichel | Giuseppe Rodriguez | Miroslav S. Pranic | Xuebo Yu | L. Reichel | G. Rodriguez | Xuebo Yu | Zhengsheng Wang | M. Pranic
[1] Stefan Güttel,et al. Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions , 2012, Numerische Mathematik.
[2] Kim-Chuan Toh,et al. Calculation of Pseudospectra by the Arnoldi Iteration , 1996, SIAM J. Sci. Comput..
[3] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[4] Lothar Reichel,et al. Network Analysis via Partial Spectral Factorization and Gauss Quadrature , 2013, SIAM J. Sci. Comput..
[5] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[6] Lothar Reichel,et al. Recurrence relations for orthogonal rational functions , 2013, Numerische Mathematik.
[7] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[8] Lothar Reichel,et al. Recursion relations for the extended Krylov subspace method , 2011 .
[9] Axel Ruhe,et al. Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..
[10] Roger B. Sidje,et al. Expokit: a software package for computing matrix exponentials , 1998, TOMS.
[11] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[12] Valeria Simoncini,et al. A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..
[13] Axel Ruhe. Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .
[14] Stefan Güttel,et al. A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions , 2013 .
[15] J. Baglama,et al. Numerical approximation of the product of the square root of a matrix with a vector , 2000 .
[16] Stefan Güttel,et al. Rational Krylov Methods for Operator Functions , 2010 .
[17] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[18] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[19] L. Trefethen,et al. Pseudospectra of rectangular matrices , 2002, Spectra and Pseudospectra.
[20] Valeria Simoncini,et al. A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..
[21] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation , 1984 .
[22] Vladimir Druskin,et al. Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..
[23] Lloyd N. Trefethen,et al. Large-Scale Computation of Pseudospectra Using ARPACK and Eigs , 2001, SIAM J. Sci. Comput..
[24] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[25] Nicholas J. Higham,et al. Efficient algorithms for the matrix cosine and sine , 2005, Numerical Algorithms.
[26] Lothar Reichel,et al. Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..
[27] Desmond J. Higham,et al. Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..