A rational Arnoldi process with applications

Summary The rational Arnoldi process is a popular method for the computation of a few eigenvalues of a large non-Hermitian matrix A∈Cn×n and for the approximation of matrix functions. The method is particularly attractive when the rational functions that determine the process have only few distinct poles zj∈C, because then few factorizations of matrices of the form A − zjI have to be computed. We discuss recursion relations for orthogonal bases of rational Krylov subspaces determined by rational functions with few distinct poles. These recursion formulas yield a new implementation of the rational Arnoldi process. Applications of the rational Arnoldi process to the approximation of matrix functions as well as to the computation of eigenvalues and pseudospectra of A are described. The new implementation is compared to several available implementations.

[1]  Stefan Güttel,et al.  Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions , 2012, Numerische Mathematik.

[2]  Kim-Chuan Toh,et al.  Calculation of Pseudospectra by the Arnoldi Iteration , 1996, SIAM J. Sci. Comput..

[3]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[4]  Lothar Reichel,et al.  Network Analysis via Partial Spectral Factorization and Gauss Quadrature , 2013, SIAM J. Sci. Comput..

[5]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[6]  Lothar Reichel,et al.  Recurrence relations for orthogonal rational functions , 2013, Numerische Mathematik.

[7]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[8]  Lothar Reichel,et al.  Recursion relations for the extended Krylov subspace method , 2011 .

[9]  Axel Ruhe,et al.  Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..

[10]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[11]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[12]  Valeria Simoncini,et al.  A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..

[13]  Axel Ruhe Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .

[14]  Stefan Güttel,et al.  A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions , 2013 .

[15]  J. Baglama,et al.  Numerical approximation of the product of the square root of a matrix with a vector , 2000 .

[16]  Stefan Güttel,et al.  Rational Krylov Methods for Operator Functions , 2010 .

[17]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[18]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[19]  L. Trefethen,et al.  Pseudospectra of rectangular matrices , 2002, Spectra and Pseudospectra.

[20]  Valeria Simoncini,et al.  A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..

[21]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[22]  Vladimir Druskin,et al.  Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..

[23]  Lloyd N. Trefethen,et al.  Large-Scale Computation of Pseudospectra Using ARPACK and Eigs , 2001, SIAM J. Sci. Comput..

[24]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[25]  Nicholas J. Higham,et al.  Efficient algorithms for the matrix cosine and sine , 2005, Numerical Algorithms.

[26]  Lothar Reichel,et al.  Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..

[27]  Desmond J. Higham,et al.  Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..