Adaptive synchronization of a new hyperchaotic system with uncertain parameters

This paper discusses control for the master–slave synchronization of a new hyperchaos with five uncertain parameters. An adaptive control law is derived to make the states of two identical hyperchaotic systems asymptotically synchronized based on the Lyapunov stability theory. Finally, a numerical simulation is presented to verify the effectiveness of the proposed synchronization scheme.

[1]  Jinhu Lu,et al.  Controlling uncertain Lü system using linear feedback , 2003 .

[2]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[3]  Jinhu Lu,et al.  Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .

[4]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .

[5]  Ju H. Park Adaptive synchronization of hyperchaotic Chen system with uncertain parameters , 2005 .

[6]  Ju H. Park Adaptive Synchronization of a Unified Chaotic System with an Uncertain Parameter , 2005 .

[7]  Xikui Ma,et al.  Synchronization of chaotic systems with parametric uncertainty using active sliding mode control , 2004 .

[8]  Toshimitsu Ushio SYNTHESIS OF SYNCHRONIZED CHAOTIC SYSTEMS BASED ON OBSERVERS , 1999 .

[9]  Y. J. Cao,et al.  Controlling Chaotic Systems via Phase Space Reconstruction Technique , 2003, Int. J. Bifurc. Chaos.

[10]  Chi-Chuan Hwang,et al.  A linear continuous feedback control of Chua's circuit , 1997 .

[11]  Xiaofeng Liao,et al.  Complete and lag synchronization of hyperchaotic systems using small impulses , 2004 .

[12]  J. Yan,et al.  Adaptive chattering free variable structure control for a class of chaotic systems with unknown bounded uncertainties , 2005 .

[13]  Zhi-Hong Guan,et al.  Feedback and adaptive control for the synchronization of Chen system via a single variable , 2003 .

[14]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[15]  SYNCHRONIZATION OF HIGH-DIMENSIONAL CHAOS GENERATORS BY OBSERVER DESIGN , 1999 .